1.Andrianov, I. and Awrejcewicz, J., “A Role of Initial Conditions Choice on the Results Obtained Using Different Perturbation Methods”, J. Sound Vib., Vol. 236(1), pp. 161-165(2000).
2.Argyris, J., Haase, M., and Heinrich, J. C., “Finite Element Approximation to Two-Dimensional Sine-Gordon Solitons”, Comput. Methods Appl. Mech. Eng., Vol. 86, pp. 1-26(1991).
3.Benabdallah, A., Caputo, J. G., and Flytzanis, N., “The Window Josephson Junction: a Coupled Linear nonlinear System”, Phys. D, Vol. 161, pp. 79-101(2002).
4.Boztosun, I., Charafi, A., “An analysis of the linear advection-diffusion equation using mesh-free and mesh-dependent methods”, Eng. anal. bound. elem., Vol. 26, pp. 889-895(2002).
5.Chen, C. K. and Ho, S. H., “Transverse vibration of a rotating twisted Timoshenko beams under axial loading using differential transform”, Int. J. Mech. Sci., Vol. 41, pp. 1339-1356(1999).
6.Chen, C. K. and Ho, S. H., “Application of Differential Transformation to Eigenvalue Problems”, Appl. Math. Comput., Vol. 79, pp. 173-188(1996).
7.Chen, C. L. and Liu, Y. C., “Solution of two-boundary-value problems using the differential transformation method”, J. Optim. Theory Appl., Vol. 99, pp. 23-35(1998).
8.Chiou, J. S. and Tzeng, J. R., “Application of the Taylor transform to Nonlinear Vibration Problems”, Trans. ASME, J. Vib. Acoust., Vol. 118, pp. 83-87(1996).
9.Dehghan, M., “Crank-Nicolson Finite Difference Method for Two- Dimensional Diffusion with an Integral Condition”, Appl. Math. Comput., Vol. 124, pp. 17-27(2001).
10.Dooren, R. V., Janssen, H., “A continuation algorithm for discovering new chaotic motions in forced Duffing systems”, J. Comput. Appl. Math., Vol. 66, pp. 527-541(1996).
11.Dubrovsky, V. G., and Formusatik, I. B., “New Solutions of Two-Dimensional Integrable Sine-Gordon Equation Generated by Nontrivial Singular Boundaries”, Phys. Letters A, Vol. 278, pp. 339- 347(2001).
12.Kaya, D., “An application of the Modified Decomposition Method for Two Dimensional Sine-Gordon Equation”, Appl. Math. Comput., Vol. 159, pp. 1-9(2004).
13.Kuo, B. L. and Chen, C. K., “Application of a Hybrid Method to the Solution of the Nonlinear Burgers’ equation”, Transaction of the ASME, J. Appl. Mech., Brief Note, Vol. 70, pp. 926-929, November(2003).
14.Ku, Y. H. and Sun, X., “Chaos and limit cycle in Duffing’s Equation”, J. Franklin Inst., Vol.327, pp. 165-195(1990).
15.Minzoni, A. A., Smyth, N. F., and Worthy, A. L., “Pulse Evolution for a Two-Dimensional Sine-Gordon Equation”, Phys. D, Vol. 159, pp. 101- 123(2001).
16.Minzoni, A. A., Smyth, N. F., and Worthy, A. L., “Evolution of Two-Dimensional Standing and Travelling Breather Solutions for the Sine-Gordon Equation”, Phys. D, Vol. 189, pp. 167-187(2004).
17.Pilipchuk, V. N., “Analytical Study of Vibrating Systems with Strong Non-Linearities by Employing Saw-tooth Time Transformations”, J. Sound Vib., Vol. 192, pp. 43-64(1996).
18.Sheng, Q., Khaliq, A. Q. M., and Voss, D. A., “Nmerical Simulation of Two-Dimensional Sine-Gordon Solitons via a Split Cosine Scheme”, Math. Comput. Simul., Vol. 68, pp. 355-373(2005).
19.Srirangarajan, H. R. and Banait, P. J., ”Analysis of Duffing’s Oscillator Equation with Time-Dependent Parameters” , J. Sound Vib., Vol. 233, pp. 435-440(2000).
20.Yu, L. T., and Chen, C. K., “The Solution of the Blasius Equation by the Differential Transformation Method”, Math. Comput. Model., Vol. 28, pp. 101-111(1998).
21.Yu, L. T., and Chen, C. K., “Application of Taylor Transformation to Optimize Rectangular Fins with Variable Thermal Parameters”, Appl. Math. Model., Vol. 22, pp.11-21(1998).
22.趙家奎, 微分轉換及其在電路中的應用, 華中理工大學出版社(1986).
23.何星輝著, 微分轉換於自旋、預扭、承受軸向負載Timoshenko樑振動問題之研究, 國立成奶j學機械工程學系博士論文(1998).