|
參考文獻 1.Boyd, S., Ghaoui, L. E., Feron, E. and Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, Pa:Siam, Philadelphia, 1994. 2.Castelan, W. B. and Infante, E. F., “A Lyapunov functional for matrix neutral difference equation with one delay”, Journal of Mathematics Analysis ans Application, vol. 71, pp. 105-130, 1979. 3.Chang, C. H. , Robust Stability for a Class of Uncertain Neutral Time-Delay Systems via LMI and Gas, I-Shou University, 2003. 4.Chang, C. H. , Stabilization for a class of uncertain time-delay system with input dealy and neutral-type perturbation, I-Shou University, Taiwan, 2003. 5.Chen, G. and Yang, M. and Yu, L. and Chu, J., “Delay Dependent Guaranteed Cost Control for Linear Uncertain Time-delay Systems”, Proceedings of the 3rd World Congress on Intelligent Control and Automation, Hefei, P. R. China, June28-July 2, 2000. 6.Desoer, C. A. and M. Vidyasagar, Feedback Systems : Input-Output Properties, Academic Press, New York, 1975. 7.Duan G. R. and Ron J. P. , “A note on Hurwitz stability of matrices”, Automatica, vol. 34, no. 4, pp. 509-511, 1998. 8.Dugard, J. and Verriest, E. I., Stability and Control of Time- delay Systems, New York : Academic Press, 1997. 9.Inamdar S. R., Kumar V. R., and Kulkarni B. D., “Dynamics of reacting systems in the presence of time delay”, Chemical Engineering Science, vol. 46, no. 3, pp. 901-908, 1991. 10.Kamen, E. W., Khargonekar P. P., and Tanenbaum A., “Stabilization of time-delay systems using finite dimensional compensators,” IEEE Transactions on Automatic Control, AC-30, pp. 75-78, 1985. 11.Kolomanovskii, V. and Myshkis A., “ Applied Theory of Functional Differential Equations”, Kluwer Academic Pub., New York, 1992. 12.Kuang, Y., Delay Differential Equation with Application in Population Dynamics, Academic Press, Boston, 1993. 13.Lam J., Gao H. and Wang C. , “ Model reduction of linear systems with distributes delay”, IEE Proc.-Control Theory Appl., vol. 152, no. 6, November 2005. 14.Li, X., Carlos E. and De Souza, “Criteria for Robust Stability and Stabilization of Uncertain Linear Systems with State Delay.Automatica”, vol. 33, no. 9, pp. 1657-1662, 1997, 15.Lien C. H., “New stability criterion for a class of uncertain nonlinear neutral time-delay systems”, International Journal of Systems Science, vol. 32, no. 2, pp. 215-219, 2001. 16.Liu, P. L., “On Delay-dependent Exponential Stability for Linear Neutral Type Time Delay Syaytem”, International Journal of Systems Science, vol. 26, no. 2, pp. 245-255, 1995. 17.Liu, P. L., “Stabilization of input delay constrained systems with delay dependence”, International Journal of Systems Science, vol. 26, no. 2, pp. 245-255, 1995. 18.Liu, P. L. and Su, T. J. , “Robust stability of interval time-Delay systems with delay-dependence”, Systems & Control Letters, vol 33, pp. 231-239, 1998. 19.Liu, P. L., “On delay dependence stabilization for uncertain neutral system with distributed delays”, Journal of Chienkuo Technology University, vol 25, no. 1, pp. 37-54, 2005. 20.Lu, C. L. and Fang, C. H., “Stability robustness bounds for uncertain circuit systems”, Journal of National Kaohsiung Institute of Technology, vol. 27, pp. 79-90, 1997. 21.Lu, C. Y. , “Robust Control of Time-Delay Systems: A Linear Matrix Inequality Approach”, National Cheng Kung University, Tainan, Taiwan, 2004. 22.Macdonald, N., Time-Lags in Biological Models, Springer-Verlag, Berlin, 1978. 23.Magdi S. M. and Naser F. Al-muthairi, “Linear parameter-varying state-delay (LPVSD) systems : stability and -gain controllers”, Systems Analysis Simulation, vol. 43, no. 7, pp. 885- 915, July 2003. 24.Magi S. M., “New results on linear parameter-varying time-delay systems “, Journal of Franklin Institute, vol. 341, pp. 675-703, 2004. 25.Mahmoud, M. S., “Robust Control and Filtering for Time-Delay Systems”, Marcel Dekker, New York, 2000. 26.Mori T. and Kokame H. , “Stability of “ , IEEE Transactions Automatic Control, vol.34. no.4. April 1989. 27.Murray, J. D., Mathematical Biology, Spring, New York , 1989. 28.Niculescu, S. I., Fu M., and Li H., “Delay-dependent closed-loop stability of linear systems with input delay: An LMI approach”, Proceedings of the 36th IEEE Conference on Decision and Control, San Fisgo, CA, 10-12, pp. 1623-1628, December, 1997. 29.Niculescu, S. I., Delay Effects on Stability, Springer-Verlag, London, 2001. 30.Phoojaruenchanachai S., Uahchinkul K. and Prempraneerach Y.,” Robust stabilisation of a state delayed system”, IEE Proc.-Control Theory Appl., vol. 145, no. 1, January 1998. 31.Roh, Y. H., and Oh J. H., “Robust stabilization of uncertain input-delay systems by sliding mode control with delay compensation”, Automatic, vol. 35, pp. 1861-1865, 1999. 32.Roh, Y. H., “Robust stability of predictor-based control systems with delayed control”, International Journal of Systems Science, vol. 33, no.2, pp. 81-86, 2002. 33.Roh, Y. H., and Oh J. H., “Robust Stability model control with uncertainty adaptation for uncertain input-delay systems”, International Journal of Control, vol. 73, no.13, pp. 1255-1260, 2000. 34.Su, T. J. and Huang, C. G.,” Robust stability of delay dependence for linear uncertain systems”, IEEE Transactions on Automatic Control, vol 37, no. 10, pp. 1656-1659, Oct. 1992 35.Trinh, H., and Aldeen M., “Stabilization of uncertain dynamic delay systems by memoryless feedback controllers”, International Journal of Control, vol. 59, pp. 1525-1542, 1994. 36.Xu S. and Lam J., ”Improved delay-dependent stability criteria for time-delay systems”, IEEE Transactions on Automatic Control, vol. 50, no. 3, March 2005. 37.Yue, D. and Han, Q. L., ”A delay-dependent stability criterion of neutral systems and its application to a partial element equivalent circuit model”, IEEE Transactions On Circuits and Systems-II : Express Briefs , vol. 51, no. 12, December 2004.
|