跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/03 18:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳錫榮
研究生(外文):Hsi-Jung Chen
論文名稱:利用電子脈衝技術改善III-V族半導體深孔電鍍均勻度
論文名稱(外文):Uniformity improvement of III-V semiconductor backside via hole plating by using electron pulse technique
指導教授:黃振國黃振國引用關係
指導教授(外文):Jenn-Gwo Huang
學位類別:碩士
校院名稱:建國科技大學
系所名稱:電機工程系暨研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:100
中文關鍵詞:電鍍電子脈衝pH值流場
外文關鍵詞:platingelectron pulsepH valueflow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:929
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著電子產品越來越小的驅勢,單一元件尺寸也必須符合規格,當元件要求小又需要整合性功能時將會使製程複雜度提升,複雜度提升的同時散熱就成了一重要的指標,而目前高頻微波通訊常用的異質接面雙極電晶體(HBT)及假型通道高速電子移動電晶體(pHEMT)其晶片背面必須鍍金,做為接地及散熱之用。
  深孔鍍金為目前市場上較具競爭力的技術,利用乾式蝕刻形成晶圓背面孔洞,再使用濺鍍將金種均勻的鍍上做為鍍金時的陰極,最後利用溼式電鍍將金薄膜均勻的沈積在晶背上,雖濺鍍成本高但均勻度佳,故為目前業界常用的製程,但因為陰極層必須有高密度及較好的均勻度,故先用濺鍍形成金種層,再使用低成本但均勻度差的溼式電鍍沈積出厚膜,因此改善電鍍均勻度將會是一項重要的課題。
  本研究的目地是將利用電子脈衝時間來控制成膜速率,因深孔電鍍會造成孔內外之金溶液濃度不同,因而金沈積厚度不均勻造成電阻升高,因此必須精確的控制孔內外金溶液濃度、溫度、pH值、比重、流動速率及所使用的電流密度,以達到最佳化的電鍍條件:時間短、良率高、成本低。
The trend of shrinking device size and maintaining feature integrated-functions give the manufacturing process towards more complicated and the accompanied heat dissipation also become a challenge. In common practice gold metal is electro-plated on the backside of high frequency HBT and pHEMT devices to use as ground and heat sink.
The deep-hole plating is one of the competitive techniques in the manufacturing process. It forms the back hole on the wafer by dry etching first. Then, the gold is coated uniformly by sputtering followed by a wet etching step. Because the sputtering process has better uniformity, the gold layer is usually formed by sputtering. And the low cost thick film is deposited by electrical plating with the expense of poor uniformity. Therefore, how to improve the quality of the plating film becomes a critical issue in developing modern advanced devices.
The purpose of this thesis work is to control the deposition rate by pulse time. Because deep-hole plating will be influenced by the density of the solution inside and outside the hole, and thus raise the resistance due to the non-uniformity of the deposition. Precise control of solution, temperature, pH value, acidimeter, flow rate and current density is necessary for optimum plating conditions to achieve high yield and low cost.
中文摘要
英文摘要
誌謝
目錄
圖目錄
表目錄
第一章 緒論
1-1 研究動機與目的
1-2 論文大綱
第二章 Ⅲ-Ⅴ晶圓背面(Backside)製程簡介
2-1 背景
2-2 製程分類與介紹
第三章 電鍍原理與製程應用
3-1 電鍍之定義
3-2 電鍍原理
3-3 電鍍基本元件與架構
3-4 電鍍方法
3-4-1 電鍍機台特性
3-5 電鍍基礎
3-6 極化原理
3-7 影響填孔電鍍的因素
第四章 實驗方法與步驟
4-1 實驗流程
4-1-1 電鍍藥水規格
4-1-2 電鍍藥水成份及反應機制
4-1-3 氰化物與非氰化物之電鍍液比較
4-1-4 非氰化物電鍍液金析出機制
4-2 實驗器材及設備
4-3 電鍍範圍
第五章 實驗結果與討論
5-1 實驗方法
5-2 溫度對均勻度之影響
5-3 電鍍液pH值分析
5-4 流場對均勻度之影響
5-5 DC電流分析
5-6 最佳化電子脈衝比
5-7 亮點
第六章 結論與未來展望
6-1 結論
6-2 未來研究目標
6-3 Backside Via Hole金薄膜剝離現象探討
參考文獻
[1]Henry Hendriks, Jim Crites, Gerald D’ Urso, Robert Fox, Thomas Lepkowski, and Bharat Patel, ”Challenges in Rapidly Scaling up Back-side Processing of GaAs Wafers”, Tyco Electronics, 2001, GaAs MANTECH, Inc.
[2]Craig P. Orlando, Joel L. Goodrich and Ernest L. Gosselin, “Backside Mounting Procedures for Semiconductor Wafer Processing”, Tyco Electronics, 2001, GaAs MANTECH, Inc.
[3]R. J. Olson, Jr., M. F. Taylor, R. J. Williams, T. S. Faska and M. Sundaram, “Alternate Backside Thinning of GaAs-Based Devices”, 1999 GaAs MANTECH, Inc.
[4]張瑞宗,“以厚膜光阻技術製備高縱橫比銅導柱之研究”交通大學材料科學研究所碩士論文,1999
[5]J. M. West,”Electrodeposition and corrosion processes”,125~128
[6]C. H. Seah, S. Mridha, and L. H. Chan, “DC/Pulse Plating of Copper for Trench/Via Filling” J. Materials Processing Technol., 114, 233-239,141(2001)
[7]T. Kobaykhshy, J. Kawasaki, K.Mihara, T.Wamashita, and H.Honma, “Influence of Bath Composition to Via-Filling by Copper Electroplating” J. Japan Institute of Electronics, 3, 324-329,(2000).
[8]H. G. Creutz, R. M. Stevenson, and E. A. Romanowski, “Electrodeposition of Copper from Acid Baths”, U.S. Pat. 3,267,010,143(1966).
[9]陳宏澤 “界面活性劑在金屬脫脂及酸洗方面之應用”, 金屬表面技術雜誌,71,53 (1981)
[10]李雅明,“固態電子學“,全華科技股份有限公司,264~269
[11]Dieter K. Schroder, ”Semiconductor Material and Device Characterization”, 2~5.
[12]田福助,”電化學基本原理與應用”,五洲出版社,(1999)
[13]萬海威,”多層印刷電路板之鍍銅製程”,電路板之訊雜誌7,24,(1988)
[14]方景禮,“電鍍添加劑總論”,表面技術雜誌,161,(1996)
[15]S. C. Chang, J. M. Shieh, K. C. Lin, B. T. Dai, T. C. Wng, C. F. Chen, and M. S. Feng “Investigations of Effects of Bias Polarization and Chemical Parameters on Morphology and Filling Capability of 130 nm Damascene Electroplated Copper” J. Vac. Soc. Technol., 19,767-774, (2001).
[16]L. J. Turbini, J. A. Jachim, G. B. Freeman, and J. F. Lane, “Characterizing water soluble fluxes: Surface insulation resistance vs. electrochemical migration,” in 13th IEEE/CHMT Int. Electronics Manufacturing Technology Symp., 1992, pp. 80–84.
[17]Morton Antler, “Gold Plated Contacts: Effect of Thermal Aging on Contact Resistance” Contact Consultants, Inc. 821 Strawberry Hill Road East Columbus, 1997 IEEE.
[18]P.H. Lawyer and C.H. Fields, “Film Stress versus Plating Rate for Pulse-Plated Gold”2001 HRL Laboratories, LLC.
[19]Jeff L. Kersey, Jr., Life Member, IEEE, and Richard C. Blish, II, Senior Member, IEEE” Gold Dendrite Simulation: Root Cause Determination” IEEE Trans. on Electron Device, vol. 4, no. 2, June 2004.
[20]S.J. Huang, H.C. Chou, T.C. Lee, B. Lin, D.W. Tu, P.C. Chao, and C.S. Wu, “The Study of Dendrites Formation Mechanism to Enhance Gold Plating Process Yield, Throughput, and Solution Lifetime”, Tyco Electronics, 2003, GaAs MANTECH, Inc.
[21]S. Benhenda, N. Ben jemaa Associate Member, IEEE, and M. Bourir “Effect Of Pulse Plating Parameters On Electrical Contact Behavior Of Nickel Coatings”, PART A, vol. 17, no. 2, June 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top