跳到主要內容

臺灣博碩士論文加值系統

(3.234.211.61) 您好!臺灣時間:2021/10/18 19:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪瑗焄
研究生(外文):Yuan-Shun Hung
論文名稱:氧化鈦薄膜的光學性質之研究
論文名稱(外文):The Investigation for Optical Properties of Titanium Oxide Films
指導教授:林素霞林素霞引用關係
指導教授(外文):Su-Shia Lin
學位類別:碩士
校院名稱:建國科技大學
系所名稱:機電光系統研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:55
中文關鍵詞:氧化鈦(TiOx)電子束蒸鍍法離子束輔助蒸鍍法光學性質
外文關鍵詞:titanium oxide (TiOx)electron beam evaporationion beam assisted evaporationoptical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氧化鈦(TiOx)薄膜是被廣泛研究的光學薄膜,在光學元件上亦有諸多的應用。TiOx薄膜的性質深受其製備方法及製備參數的影響,為了獲得緻密且平坦的TiOx光學薄膜,本研究將採用電子束蒸鍍法與離子束輔助蒸鍍法來沈積TiOx薄膜,並比較此二種沈積方法對TiOx薄膜的光學性質之影響;此外,亦探討電子束功率、離子束電壓、薄膜厚度、熱處理時間及曝光時間對TiOx薄膜之光學性質的影響。由實驗的結果得知,以離子束輔助蒸鍍法所製備的TiOx薄膜可同時具有良好的熱穩定性及光學穩定性。
Titanium oxide (TiOx) films were investigated by many people, and were used in optical devices. The characteristics of TiOx films were strongly affected by the preparation conditions and experimental parameters. In order to obtain good optical films, TiOx films were deposited by electron beam evaporation and Ion beam assisted evaporation in this study. To compare the two deposition methods how to affect the optical properties of TiOx films. Besides, the influence of power, ion voltage, thickness, annealing time, and illumination time on the optical properties of TiOx films were also investigated. The results indicated that the TiOx films prepared by ion beam assisted evaporation had good thermal stability and optical stability.
總 目 錄

中文摘要.............................................................I
英文摘要............................................................II
總目錄.............................................................III
圖目錄...............................................................V
誌 謝.............................................................VIII

第一章 緒 論........................................................1

1-1 前 言............................................................1
1-2 研究目的.........................................................2

第二章 基礎理論與文獻探討..............................................3

2-1 蒸鍍理論.........................................................3
2-2 蒸鍍系統.........................................................7
2-2-1 真空系統...............................................7
2-2-2 蒸發源.................................................7
2-2-3 電子束.................................................8
2-2-4 離子束................................................11
2-3 離子束輔助蒸鍍法.................................................13
2-4 薄膜生長機制.....................................................14
2-5 微結構的Thornton模型.............................................16

第三章 實驗方法與步驟................................................19

3-1 實驗流程........................................................19
3-2 實驗原料........................................................20
3-3 實驗設備........................................................20
3-4 蒸鍍前處理.......................................................22
3-5 熱處理實驗.......................................................24
3-6 曝光實驗........................................................24
3-7 膜層測量及分析...................................................24
3-7-1 蒸鍍速率的測量.........................................25
3-7-2 微結構的分析...........................................25
3-7-3 光學性質的分析.........................................25

第四章 結果與討論....................................................26

4-1 以電子束蒸鍍法沈積TiOx薄膜........................................26
4-2 以離子束輔助蒸鍍法沈積TiOx薄膜.....................................34

第五章 結 論.......................................................51

參考文獻............................................................52
圖 目 錄

Fig.2-1 The development of vacuum technology and vacuum evaporation…4
Fig.2-2 (a) Knudsen cell ; (b) the crucible of no cover.............6
Fig.2-3 The operation principle of the electron gun for evaporation........................................................10
Fig.2-4 The diagram of operation principle of ion beam.............12
Fig.2-5 Nucleation and formation of thin films.....................15
Fig.2-6 The Thorton zone model : schematic representation of the influence of substrate temperature and argon working pressure on the structure of coatings deposited by sputtering .................18
Fig.3-1 Flow chart of the experimental procedure...................19
Fig.3-2 Schematic diagram of ion assisted electron gun evaporation system for films deposition........................................21
Fig.3-3 The appearance picture of the ion source (Veeco Mark-І)....23
Fig.4-1 The deposition rate of TiOx films prepared at different power..............................................................27
Fig.4-2 The absorbance in the VIS-IR region of TiOx films prepared at
different powers...................................................28
Fig.4-3 The average absorbance (800nm ~ 1500nm) of TiOx films pr
-epared at different powers........................................30
Fig.4-4 The absorbance in the VIS-IR region of TiOx films with different thickness................................................31
Fig.4-5 The scanning electron micrograph of the cross section of TiOx
films prepared at the power of 1.5 kW and the thickness of 300 nm..32
Fig.4-6 The absorbance in the VIS-IR region of TiOx films at different annealing time...........................................33
Fig.4-7 The average absorbance (800nm ~ 1500nm) versus the annealing
time for TiOx films prepared at the power of 1.5 kW and the thickness of 100 nm................................................35
Fig.4-8 The absorbance in the VIS-IR region of TiOx films at different visible illumination time................................36
Fig.4-9 The average absorbance (800nm ~ 1500nm) versus the visible
illumination time for TiOx films prepared at the power of 1.5 kW and the thickness of 100 nm............................................37
Fig.4-10 The deposition rate of TiOx films prepared at different ion anode voltages.....................................................39
Fig.4-11 The absorbance in the VIS-IR region of TiOx films prepared at different ion anode voltages....................................40
Fig.4-12 The average absorbance (800nm ~ 1500nm) of TiOx films prepared at different ion anode voltages...........................41
Fig.4-13 The absorbance in the VIS-IR region of TiOx films prepared at different oxygen flow rate......................................43
Fig.4-14 The absorbance in the VIS-IR region of TiOx films with
different thickness................................................44
Fig.4-15 The scanning electron micrograph of the cross section of TiOx films prepared at the ion anode voltage of 110 eV, oxygen flow rate of 3sccm, and the thickness of 100 nm.........................45
Fig.4-16 The absorbance in the VIS-IR region of TiOx films at different annealing time...........................................46
Fig.4-17 The average absorbance (800nm ~ 1500nm) versus the
annealing time for TiOx films prepared at the ion anode voltage of 110eV, oxygen flow rate of 3 sccm, and the thickness of 100nm......48
Fig.4-18 The absorbance in the VIS-IR region of TiOx films at different visible illumination time................................49
Fig.4-19 The average absorbance (800nm ~ 1500nm) versus the visible
illumination time for TiOx films prepared at the ion anode voltage of
110eV,oxygen flow rate of 3 sccm, and the thickness of 100 nm......50
[1]C. Borello, C. Minero, E. Pramauro, E. Pelizzetti, N. Serpone, H.
Hidaka, Environ. Toxicol. Chem. 8 (1989) 997.

[2]W. Lee, H.S. Shen, K. Dwight, A. Wold, J. Solid State Chem.106 (1993) 288.

[3]K. Takeuchi, I. Nakamura, O. Matsumoto, S. Sugihara, M. Ando,
T. Ihara, Chem. Lett. (2000) 1354.

[4]S. Takeda, S. Suzuki, H. Odaka, H. Hosono, Thin Solid Films
392 (2001) 338.

[5]J.A. Byrne, B.R, Eggins, N.M.D. Brown, B. McKinney, M. Rouse, Appl. Catal. B: Environ. 17 (1998) 25.

[6]J. Yu, X. Zhao. Q. Zhao, Thin solid Films 379 (2000) 7.

[7]M. Long, H.J. Rack, Biomaterials 19 (1998) 1621.

[8]C.C. Trapalis, P. Keivanidis, G. Kordas, M. Zaharescu, M. Crisan, A. Szatvanyi, M. Gaartner, Thin Solid Films 433 (2003) 186.

[9]R. Weinberger, R.B. Garber, Appl. Phys. Lett. 66 (1995) 2409.

[10]D. Manno, G. Micocci, R.Rella, A. Serra, A.Taurino, A. Tepore,
J.Appl. Phys. 82 (1997) 54.

[11]N. Martin, C. Rousselot, D.Rondot, F. Palmino, R.Mercier, Thin
Solid Films 300 (1997) 113.

[12]B. O’Regan, M. Grätzel, Nature 353 (1991) 737.

[13]J. Robertson, J. Vac. Sci. Technol. B 18 (2000) 1785.

[14]A. Mills, S, Le Hunte, J. Photochem. Potobiol. A Chem. 108
(1997) 1.

[15]R.N. Pandey, K.S.C. Babu, O.N. Srivastava, Prog. Surf. Sci. 52 (1996) 125.

[16]K. Kalyanasundaram, M. Grätzel, Coordination Chem. Rev. 77 (1998) 347.

[17]R. Krol, A. Goossens, J. Schoonman, J.Electrochem. Soc. 144
(1997) 1723.

[18]M. Radecka, K. Zakrzewska, M. Wierzbicka, A. Gorzkowska, S.
Komornicki, Solid State Ionics 157 (2003) 379.

[19]K. Suzuki, 2nd International Conference on Coating on Glass,
Saarbrücken, 1998, p. 24.

[20]M. Sasae, K. Miyabe, Y. Ysmskr, I. Tsksno, S. Isobe, Thin Solid Films 281-282 (1996) 431.

[21]Q. Tang, D. Sun, M. Arai, H. Matsuda, K. Cai, A. Matsusita, The 5th International Symposium on Sputter and Plasma Process,Kanazawa, 1999, p. 147.

[22]Q. Tang, S. Ogura, J. Vac. Sci Technol. A15 (1997) 2672.

[23]U. Heister, J. Krempel-Hesse, J. Szczyrbowski, G. Teschner, J.
Bruch, G. Bräuer, 2nd International Conference on Coating on Glass, Saarbrücken, 1998, p. 43.

[24]U. Heister, J. Krempel-Hesse, J. Szczyrbowski, G. Teschner, J. Bruch, G. Bräuer, The 5th International Symposium on Sputter and Plasma Process, Kanazawa, 1999, p. 39.

[25]P. Lobl, M. Huppertz, D.Mergel, Thin Solid Films 251 (1994) 72.

[26]M. Vergöhl, N. Malkomes, T. Staedler, T. Matthèe, U. Richer, Thin Solid Films 351 (1999) 42.

[27]L.J. Meng, M.P. dos Santos, Thin Solid Films 226 (1993) 22.

[28]N. Martin, C. Rousselot, C. Savall, F. Palmino, Thin Solid Films 287 (1996) 154.

[29]C.J. Brinker, M.S. Harrington, Solar Energy Mater. 5 (1981) 159.

[30]S. Pongratz, A.Zöller, J. Vac. Sci. Technol. A10 (1992) 1897.

[31]G.A. Battiston, R. Gerbasi, M. Porchia, A. Marigo, Thin Solid Films 239 (1994) 186.

[32]L.A. Fernandez, J.P. Espinos, T.R. Belderrain, A.R. GonzalezElipe, Thin Solid Films 241 (1994) 198.

[33]L. Holland, “Vacuum Deposition of Thin Films”,Chapman &Hall , (1963).

[34]K.L. Chopra, “Thin Film Phenomena”, McGraw-Hill , (1963).

[35]M. Faraday, Phil. Trans, 147 (1857) 145.

[36]白本靖寬, 吉田貞史(編著), 王建義(譯者), “薄膜工程學”, 全華科技圖書, 2004年8月, 初版。

[37]H. Sakaue, M. Nakano, T. Ichihara and T. Horiike, Jpn. J. Appl. Phys., 30 (1990) L 124.

[38]衛泰宇,李正中, “光學薄膜製鍍技術及應用”, 光電科技資料叢書之二十七, 行政院國科會光電小組。

[39]李正中, “ 薄膜光學與鍍膜技術 ”, 藝軒圖書出版社, 2006年6月, 第三版。

[40]大工原茂樹, “ 光端真空利用技術 ”, 日經技術圖書, (1991) p.223 。

[41]莊達人, “ VLSI 製造技術 ”, 高立圖書有限公司, (1996) p.357.

[42]柯賢文, “ 表面與薄膜處理技術 ”, 全華科技圖書, 2005年1月, 初版。

[43]周安琪(譯者), “ 薄膜材料 ”, 徐氏基金會出版。

[44]John A. Thornton, J. Vac. Sci. Technol., 11 (4) (1974) 666.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 呂寶靜 (1993)。老人研究的範疇與理論架構。研考雙月刊17(2):37-44。
2. 何英奇 (1987)。大專學生之生命意義感及其相關:意義治療法基本概念之實徵性研究。教育心理學報,20,頁87-106。
3. 蔡敏玲 (1996)。教育質性研究者請在本文中現身:兩項重要思慮。國民教育,37(2),21-30。
4. 劉淑娟 (1999)。老年人的靈性護理。護理雜誌,第46卷,第四期51-56。
5. 鄭淑子 (1996)。高齡化社會中老人社會支持體系之探討。中華家政,25,66-76。
6. 萬育維 (1993)。老年人的再教育與社會參與。社區發展季刊64期。
7. 楊錦登 (1999)。生活適應之探討。國教輔導,39(2),45-55。
8. 詹火生 (1993)。人口高齡化問題之對策-政府、家庭與民間的分工。研考雙月刊第174
9. 黃文三 (1996)。老人進修教育初探。成人教育雙月刊,34,38-42。
10. 胡慧嫈 (1998)。焦點團體法促進社會工作專業研究實務性之探究。社區發展季刊,(81),282-292。
11. 林勝義 (1993)。退休後休閒和社會參與的規劃。成人教育16,24-27。
12. 呂寶靜 (2000)。老人朋友網絡支持功能之初探。社會政策與社會工作學刊4(2):43-90。
13. 伍振鷟、陳伯璋(1985)。我國近四十年來教育研究之初步檢討,中國論壇,21卷,1期,頁230-243。
14. 朱芬郁 (1998)。退休老人生涯規劃初探(上)。香光莊嚴五十四期6月20日。