跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/06 21:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王衍展
研究生(外文):Yen-Chan Wang
論文名稱:具交錯式擾流肋骨之多孔介質管道之混合對流熱傳研究
論文名稱(外文):Study of Mixed Convective Heat Transfer in Porous Channel with Staggered Ribbed Turbulator
指導教授:曾憲中曾憲中引用關係
指導教授(外文):Sheng-Chung Tzeng
學位類別:碩士
校院名稱:建國科技大學
系所名稱:機電光系統研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:92
語文別:中文
論文頁數:78
中文關鍵詞:混合對流燒結多孔介質管道熱傳係數
外文關鍵詞:convective heat transfersintered porous channelheat transfer
相關次數:
  • 被引用被引用:2
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究目標係對多孔燒結介質管道進行混合對流實驗研究,燒結多孔介質測試段由三種不同粒徑0.704、0.830及1.163mm之銅粒組成,在等熱通量之加熱下測量壁溫分佈特性,使用壓縮空氣作為工作流體來進行冷卻,並對多孔燒結介質管道加入了肋骨。
使用邊界延伸的 Darcy 模型用作流體流動並且把二階方程式的模型用作熱傳,把速度和溫度分佈做分析得到比較那確切的解釋,確認這個多孔介質熱傳的方法是有效的。多孔燒結介質測試段在加入肋骨與實際的傳導率比較是工程上參數的重要的發現,於瞭解加入肋骨增加熱傳係數、雷諾數、熱通量及不同軸向位置下對於熱傳效果的影響在研究上的重大影響。
在不同之雷諾數及熱通量下之燒結多孔介質的熱傳係數和紐塞數又被分析,實驗結果比較先前學者之相關研究有高度之吻合性。
The objective of the present work is to study the convective heat transfer in sintered porous channel. The sintered test section is made of three diameters of copper beads of 0.704, 0.830 and 1.163 mm. The characteristics of the wall temperature distribution with constant heat flux were measured. This study also reveals that heat transfer coefficients and Nusselt numbers were presented for various Reynolds numbers and heat flux.
Use compress air to proceed cooling work fluid, Also facing sintered porous channel weigh rib. Using the Brinkman-extended Darcy model for fluid flow and the two-equation model for heat transfer, the analytical solutions for both velocity and temperature distributions are obtained and compared with the exact heat transfer in order to validate the porous medium approach. The sintered test section weigh ribbed and the effective conductivity ratio is parameters of engineering importance are identified, Main purpose weigh ribbed exist understand increase heat coefficient, Reynolds numbers, heat flux and not axial seat facing heat transfer effect in influence, by under consideration great effect.
Finally, the results of the heat transfer coefficients and Nusselt numbers in sintered porous channels are compared with those of the previous study with a high degree of accuracy.
目 錄
頁次
中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
表目錄 Ⅵ
圖目錄 Ⅶ
符號說明 Ⅸ
第一章 緒論 1
1-1 研究動機及背景 1
1-2 文獻回顧 2
1-2-1 多孔性介質在理論方面研究 2
1-2-2 多孔性介質在實驗方面研究 8
1-2-3 多孔性介質在強制對流下熱散逸模擬方面研究 17
1-3 研究目的 19
第二章 理論分析 20
第三章 實驗設備與程序 25
3-1 實驗裝置 25
3-2 實驗步驟 34 3-3 誤差分析 37
第四章 結果與討論 44
第五章 結論 64
5-1 結論 64 IV
5-2 研究貢獻 66
5-3 未來研究方向 67
參考文獻 68
附錄 74
V
參考文獻
Alkam, M. K., Al-Nimr, M. A. and Hamdan, M. O., 2002, “On Forced convection in Channels Partially Filled with Porous Substrates,” Heat and Mass Transfer, Vol. 38, pp. 337~342.
Bear, J., 1972, Dynamics of Fluids in Porous Media, Elsevier, New York.
Brinkman, H. C., 1947, “A Calculation of the Viscous Force Exterted by a Flowing Fluid on a Dense Swarm of Particles,” Applied Science Research, Al., pp. 27~34.
Chao, C. H., and Hwang, G. J., 1992, “Laminar Mixed Convection in a Horizontal Rectangular Darcy Porous Channel,” Journal of the Chinese Society of Mechanical Engineers, Vol. 13, pp. 430~437.
Cheng, P., and Hsu, C. T., 1986, “Applications of Van Driest’s Mixing Length Theory to Transverse Thermal Dispersion in Forced Convective Flow Through a Packed Bed,” Int. Commun. Heat Mass Transfer, Vol. 13, pp. 613~625.
Cheng, P., and Zhu, H., 1987, “Effects of Radial Thermal Dispersion on Fully-Developed Forced Convection in Cylinedrical Packed Tubes,” Int. J. Heat Mass Transfer, Vol. 30, pp. 2373~2383.
Cheng, P., 1987, “Recent Studies of Wall Effects on Fluid Flow and Heat Transfer in Packed-Sphere Beds,” Proc. Indian Congress of Appl. Mech.
Cheng, P., 1987, “Wall Effects on Fluid Flow and Heat Transfer in Porous Media,” Proc. 2 ASME / JSME Thermal Engng Joint Conf., Vol. 2, pp. 297-303. nd
Cheng, P., Hsu, C. T., and Chowdhury, A., 1988, “Forced Convection in the a Packed Channel With Asymmetric Heating,” ASME J. of Heat Transfer, Vol. 110, pp. 946~954.
Cheng, P., Hsu, C. T. and Chowdhury, A., 1988, “Forced Convection in the Entrance Region of a Packed Channel With Asymmetric Heating,” J. Heat Transfer, 110, pp. 946~954.
Coberly, C. A., and Marshall, W. R. Jr., 1951, Temperature Gradients in Gas Streams Flowing Through Fixed Granular Beds, Chem. Engng Prog. 47, 141-150.
Coleman, H. W., Glenn Steele, W. and Taylor, R. P., 1995, “Implications of Correlated Bias Uncertainties in Single and Comparative Tests,” Transactions of the ASME, Vol. 117, pp. 552~557.
Darcy, H., 1856, “Les Fountains Publiques de La Ville de Dijon, ” Dallmont, Paris.
Dittus, F. W., and Boelter, L. M. K., 1930, “Heat Transfer in Automobile Radiators of the Tubular Type,” University of California Publications in Engineering, Vol. 2, No. 13, pp. 443~461, reprinted in Int. Comm. Heat Mass Transfer, Vol. 12, 1985, pp. 3~22.
Ergun, S., 1952, Fluid Flow Through Packed Columns, Chemical Engineering Progress, Vol. 48, pp. 89~94.
Forchheimer, P., 1901, “Wasserbeweguing durch Boden,” Z. Ver. Deutsch Ing., Vol. 45, pp. 1782~1788.
Fu, H. L., Leong, K. C., Huang, X. Y., and Liu, C. Y., 2000, “A Novel Method of Cooling Electronic Packages Using a Porous Channel Heat Sink Subjected to Oscillating Flow,” Proceedings of IEEE Inter Soclety Conference on Thermal Phenomena, pp. 162~168.
Hadim, A., 1994, “Forced Convection in a Porous Channel With
Localized Heat Sources, ” ASME journal of Heat Transfer, Vol. 116, pp. 465~472.
Holman, J. P., 1989, “Heat Transfer, ”McGraw-Hill, Inc., pp. 481~485.
Hunt, M. L., and Tien, C. L., 1988, “Non-Darcian Convection in Cylindrical Packed Beds,” ASME journal of Heat Transfer, Vol. 110, pp. 378~383.
Hunt, M. L., and Tien, C. L., 1988, “Effects of Thermal Dispersion on Forced Convection in Fibrous Media,” Int. J. Heat Mass Transfer, Vol. 31, No. 2, pp. 301~309.
Hwang, G. J., and Chao, C. H., 1994, “ Heat Transfer Measurement and Analysis for Sintered Porous Channels,” ASME journal of Heat Transfer, Vol. 116, May, pp. 456~464.
Hwang, G. J., Cheng, Y. C., and Chiang, Y. W., 1997, “An Experimental Study of Laminar Heat Transfer in a One-Porous-Wall Square Duct With Suction Flow,” Int. J. Heat Mass Transfer, Vol. 40, No. 2, pp. 481~485.
Hwang, J. J., Hwang, G. J., Yeh, R. H., and Chao, C. H., 2002, “Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams, ” Transactions of the ASME, Vol. 124, pp.120~129.
Jones, D. P., and Krier, H., 1983, “Gas Flow Resistance Measurements Through Packed Beds at High Reynolds Numbers,” ASME J. Fluids Engineering, Vol. 105, pp. 168~173.
Kar, K. K., Dybbs, A., 1982, “Internal Heat Transfer Coefficients of Porous Metals,” The Winter Annual Meeting of ASME, Phoenix, Arizona, pp. 81~89.
Kaviany, M., 1985, “Laminar Flow Through a Porous Channel Bounded
by Isothermal Parallel Plates,” Int. J. Heat Mass Transfer, Vol. 28, pp. 851~858.
Kim, S. J., Yoo, J.W., and Jang, S. P., 2002, “Thermal Optimization of a Circular-Sectored Finned Tube Using a Porous Medium Approach,” ASME J. Heat Transfer, Vol. 124, pp. 1026~1033.
Koch, D. L., and Brady, J. F., 1986, The Effective Diffusivity of Fibrous Media, A. I. Ch. E. Jl 32, 575-591.
Koh, J.C.Y., and Colony, R., 1974, “Analysis of Cooling Effectiveness for porous Material in a Coolant Passage, ” ASME journal of Heat Transfer, August, pp. 324~330.
Kuznetsov, A. V., 1995, “An Analytical Solution for Heating a Two-Dimensional Porous Packed Bed by a Non-Thermal Equilibrium Fluid Flow, “ Applied Scientific Research, Vol.55, n1, pp.83-89.
Kuznetsov, A. V., 1996, “A Perturbation Solution for Nonthermal Equilibrium Fluid Flow Through a Three-Dimensional Sensible Heat Storage Packed Bed, “J. Heat Transfer, Vol. 118, n2, pp.508-510.
Lchimiya, K., 1999, “A New method for Evaluation of Heat Transfer Between Solid Material and Fluid in a Porous Medium,” ASME J. Heat Transfer, Vol. 121, pp. 978~983.
Lee, D. Y., and Vafia, K., 1999, “Analytical Characterization and Conceptual Assessment of Siod and Fluid Temperature Differentials in Porous Media,” Int. J. of Heat and Mass Transfer, Vol. 42, pp. 423~435.
Leong, K. C., and Jin, L. W., 2004, “Heat Transfer of Oscillating and Steady Flows in a Channel Filled With Porous Media,” Int. Comm. of Heat Mass Transfer, Vol. 31, No.1, pp. 63~72.
Murphy, T. J., and Bowman, W. J., 1996, “An Improved Method for Measuring the Compactness Factor in a Porous Medium, ” IEEE, pp.
1867~1872.
Plautz, D. A., and Johnstone, H. F., 1955, Heat and Mass Transfer in Paked Beds, A. I. Ch. E. Jl 1, 193-199.
Poulikakos, D., and Renken, K., 1987, “Forced Convection in a Channel Filled With Porous Media, including the Effects of Flow Inertia, Variable Porosity, and Brinkman Friction, ” ASME journal of Heat Transfer, Vol. 109, pp. 880~888.
Quinton, J. H., and Storrow, J. A., 1956, Heat Transfer to Air Flowing Through Packed Tubes, Chem, Engng Sci. 5, 245-257.
Renken, K. J., and Poulikakos D., 1988, “Experiment and Analysis of Forced Convective Heat Transport in a Packed Bad of Spheres, ” Int. J. Heat Mass Transfer, Vol. 31, No. 7, pp. 1399~1408.
Schroeder, K. J., Renz, U. and Elegeta, K., 1981, Forschunges-Berichte Des Landes Nordrhein-Westfalen No. 3037.
Sozen, M., and Vafai, K., 1993, “Longitudinal Heat Dispersion in Porous Beds with Real-Gas Flow,” Journal of Thermophysics and Heat Transfer, jan-March pp. 153~157.
Tada, S., Echigo, R., and Yoshida, H., 1996, “A New Concept of Porous Thermoelectric Module Using a Reciprocating Flow for Cooling / Heating System, ” Intemational Conference on Thermoelectrics, IEEE, Vol. 15, pp. 264~268.
Tang, L., Moores, K. A., Ramaswamy, C., and Joshi, Y., 1998, “Characterizing the Thermal Performance of a Flow Through Electronics Module (SEM-E Format) Using a Porous Media Model, ” Fourteenth IEEE SEMI-THERM Symposium, pp. 68~77.
Vafai, K., and Tien, C. L., 1981, “Boundary and Inertia Effects on Flow and Heat Transfer in porous Media,” Int. J. Heat Mass Transfer, Vol. 24, pp.195~203.
Vafai, K., Alkire, R. L., and Tien, C. L., 1985, “An Experimental Investigation of Heat Transfer in Variable Porosity Media,” ASME journal of Heat Transfer, Vol. 107, pp. 642~647.
Wu, C. C., Chao, C. H., and Hwang, G. J., 1995, “Investigation of Non-Darcian Forecd Convection in an Asymmetrically Heated Sintered Porous Channel,” Journal of Heat Transfer, Vol. 117, pp. 752~732.
Wu, C. C., and Hwang, G. J., 1998, “Flow and Heat Transfer Characteristics Inside Packed and Fluidized Beds,” ASME journal of Heat Transfer, Vol. 120, pp. 667~673.
Yagi, S., and Kunii, D., 1960, Studies on Heat Transfer Near Wall Surface on Tubes, A. I. Ch. E. Jl 16, pp.97~104.
Yagi, S., and Wakao, N., 1959, Heat and Mass Transfer From Wall to Fluid in Packed Beds, A. I. Ch. E. Jl 5, pp.79~85.
吳章傑,1996 “多孔介質槽流之阻力及熱傳研究”,國立清華大學動力機械工程研究所博士論文。
郭嘉欣,1996 “高速主軸多孔性冷卻器之熱傳特性分析”,國立中山大學機械工程研究所碩士論文。
蔡耀毅,1996 “多孔燒結介質槽流之熱傳量測分析”,國立清華大學動力機械工程研究所碩士論文。
盧世峰,1998 “多孔性孔道在熱發展區之熱傳分析”,國立中正大學機械工程研究所碩士論文。
符績進,2002“多孔性堆疊床於熱發展區之熱傳分析”,國立中正大學機械工程研究所碩士論文。
黃忠良,多孔材料學,復漢出版社,2001,pp.39~42。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top