跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 23:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊長智
研究生(外文):Chang-Zhi Yang
論文名稱:血管中腫瘤對流場及質傳影響之研究
論文名稱(外文):A study on the behavior of Flow Field and Mass Transfer for the stenosis in the arterial
指導教授:鄧志浩鄧志浩引用關係
指導教授(外文):Jyh-Haw Tang
學位類別:碩士
校院名稱:中原大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:70
中文關鍵詞:質傳壓力降變化。剪應力迴流區域最小平方有限元素法
外文關鍵詞:reversal flow regionswall shear stresspressure drop.least-squares finite element methodmass transfer
相關次數:
  • 被引用被引用:2
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究利用最小平方有限元素法(LSFEM)模擬血管中因為非對稱腫瘤,造成流場中流況及質傳的影響。本文中建立了3種非對稱的腫瘤大小(53.18%、65.75%、77.65%)模式,來探討其對流場、剪應力、壓力降的變化及對迴流區域的影響。同時利用質傳來探討血液中氧濃度受腫瘤及其後迴流區影響的變化情形。
本文中模擬流場介於雷諾數100-1000之間,其流場及壓力趨勢皆與前人的研究相符合,在3種不同腫瘤模式中,在腫瘤前端入口前剪應力為最大值,而在腫瘤末端會有迴流區域產生,也就是低剪應力產生,而在腫瘤壁(53.18%)上最大剪應力值與正常管壁同斷面的最大剪應力值的比值大約為2.06:1,隨著腫瘤增大此比值會變小,此結果與雷諾數的大小並無明顯相關。
在質傳方面,腫瘤前端的氧濃度質傳量為最大,此位置也就是與剪應力發生最大的地方相近似,而在流過腫瘤末端氧濃度分佈會分為2部分,正常濃度部分是沿著正常的管壁,而另一部分低氧濃度則是在腫瘤末端迴流區域與管壁附近,由氧濃度質傳分佈說明血管腫瘤迴流區與內膜增生的相關。 基於此數值模擬方式,本研究可以有效的利用數值模擬來模擬整個複雜的流場與質傳分佈。
ABSTRACT

In this research, the least-squares finite element method (LSFEM) is employed to study the influence of asymmetric stenosis on the flow fields and mass transfer in the blood vessel. There are three kinds of asymmetric arterial stenosis (53.18% , 65.75% , 77.65%) established in the article. The changes of flow fields, shear stress, pressure drop, reversed flow regions and the variation of blood density on mass transfer in the reversed flow regions distal to the arterial stenosis are carefully examined.
In this article, the Reynolds number is between 100-1000 in the flow fields. Both the flow field and pressure drop are in according with the results of early researcher’s studies. In three kinds of different arterial stenosis models, the maximum shear stress occurs in the throat of the arterial stenosis. The low shear stresses exist in the reversed flow regions distal to the arterial stenosis. At the same cross-section of the arterial, the ratio between the peak shear stress at the wall of arterial stenosis(53.81%) and that in the normal wall is 2.06: 1; and this result is irrelevant with different Reynolds numbers. As the increase of the arterial stenosis, the peak shear stress ratio between the normal and abnormal walls is decreased.
In the mass transfer, the maximum oxygen mass transfer occurs proximal to the stenosis; and it is the same place that the peak wall shear stress exists. Concentration distribution distal to the arterial stenosis will form into two streams, the normal oxygen concentration stream is along the normal artery wall, and the low oxygen concentration is formed in the reverse region distal to the arterial stenosis. It is clear that the mass transfer of oxygen can be used to see the changes and distributions in arterial stenosis of the blood vessel.
Based on the numerical simulation, this research can be concluded that this numerical model can simulate the whole complicate flow domain in good agreement with the available simulation results and the observed experiments.
目 錄
第一章 序論
1-1 研究動機.........................................01
1-2 研究方法和目的...................................02
1-3 文獻回顧.........................................04
第二章 理論分析
2-1 歷史回顧.........................................07
2-2 理論推導.........................................08
2-3控制方程式........................................10
第三章 模型建立與邊界條件給定
3-1 模型建立與格網建立...............................19
3-2 邊界條件給定.....................................21
第四章 結果分析與討論
4-1不同大小腫瘤相同雷諾數(Re=105.33)的速度分佈………..23
4-2 同一腫瘤不同雷諾數的速度分佈......................23
4-3壓力降比較.........................................24
4-4迴流區域的探討.....................................24
4-5管壁上剪應力值的比較...............................25
4-6質傳在腫瘤的探討.................................26
第五章 結論與建議
5-1 結論............................................29
5-2 建議............................................30
附錄一、共軛梯度法介紹(Conjugate Gradient Method).......50
元素-元素技巧(Element-by-Element Technique)...50
附錄二.共軛梯度法(conjugate Gradient Method)簡介........54
附錄三、使用共軛梯度法..................................56

圖 目 錄
圖一、2-D的腫瘤模型及側面圖...........................35
圖二、橢圓上點的表示...................................35
圖三、非對稱腫瘤的均勻網格.............................36
圖四、53.18%的腫瘤網格圖...............................36
圖五、65.75%的腫瘤網格圖...............................37
圖六、77.65%的腫瘤網格圖...............................37
圖七、53.18%腫瘤的速度分佈(Re=105.33) .................38
圖八、65.75%腫瘤的速度分佈(Re=105.33) .................38
圖九、77.65%腫瘤的速度分佈(Re=105.33) .................39
圖十、65.75%腫瘤的速度分佈(Re=210.67) .................39
圖十一、65.75%腫瘤的速度分佈(Re=316) ..................40
圖十二、65.75%腫瘤的速度分佈(Re=438.6) ................40
圖十三、壓力降比較.....................................41
圖十四、53.18%腫瘤前後二端迴流區向量圖.................41
圖十五、65.75%腫瘤迴流區探討(Re=438.6) ................42
圖十六、65.75%腫瘤迴流區向量圖(Re=438.6) ..............42
圖十七~二十、53.18%剪應力圖............................43
圖二十一~二十四、 為(Ang and Mazumdar)53.18%剪應力圖...45
圖二十五、最大剪應力在不同雷諾數及腫瘤的比值............46
圖二十六、取壁上剪應力斷面..............................47
圖二十七、質傳氧濃度在迴流區探討........................47
圖二十八、Sh計算值.....................................48
圖二十九、Kaazempur-Mofrad等人(2005)Sh計算��...........48
圖三十、速度向量圖......................................49
參考文獻:

1. Ang, K. C. and Mazumdar, J. N., 1997, “Mathematical asymmetric stenosis”,
Mathematical and Computer Modeling, vol. 25, pp.19-29.
2.Barakat, A.I., Karino, T., Colton, C., 1997, “Microcinematographic studies
of flow patterns in the excised rabbit aorta and its major branches”,
Biorheology, 34, 199-221.
3. Bramble, J.H. and Shatz, A.H., 1970, “On the numerical solution of
elliptic boundary-value problems by least-squares approximation of the
data ”, in B.Hubbad(ed). Numerical Solution of P.D.E., vol 2,
Academic press. New York, pp. 107-133.
4. Caro, C.G., Fitzgeral, J.M., Schroter, R.C., 1971, “Atheroma and arterial
wall shear: observation, correlation and proposal of a shear dependent mass
transfer mechanism of atherogenesis”, Proceedings of the Royal Society,
177, 109-159.
5. Cheng, T. and Michel, D., 1996, “Pulsatile flow of non-Newtonian fluids
through arterial stenoses ”, J. Biomechanics Vol. 29 pp. 899-908.
6. Ethier, C. Ross, 2002, “Computational modeling of mass transfer and links
to atherosclerosis”,Ann. Biomed. Eng. 30,461-471.
7. Farzan, Xiaoyan Deng, Alain De Champlain, Yvan Douville,
Martin King, and Robert Guidoin, 1998, “Low Reynolds number turbulence
modeling of blood flow in arterial stenoses”, Biorheology 35,281-294.
8. Friedman, M.H., Deters, O.J. and Bar Bargeron, C.B., 1986,
“Shear-dependent thickening of the human arterial intima”,
atherosclerosis, 60, pp. 161-171..
9. Fry, D.L., 1969, “Certain histological and chemical response of the
vascular interface to acutely induced mechanical stress in the aorta of
the dog”, Circulation Research, 24, 93-108.
10. Anderson, H.I., Halden, R., Glomsaker, T., 2000, “Effects of surface
irregularities on flow resistance in differently shaped arterial
stenoses”, Journal of Biomechanics 33, 1257-1262.
11. Jiang, Bo-nan, 1998, “The Least-Squares Finite Element Method: Theory and
Applications in Computational Fluid Dynamics and Electromagnetics”,
Springer Series in Scientific Computation, Springer-Verlag, Heidelberg.
12. Jiang, B.N and Sonnad, V., 1991, “Least-squares solution of
incompressible Navier-Stokes equations with the p-version of finite
elements”, NASA.TM-105203., Sept.
13. Johnston, Peter R. and Kilpatrick, David, 1991, “Mathematical modeling of
flow through an irregular arterial stenosis”, Journal of Biomechanics 24,
1069-1077.
14. Kaazempur-Mofrad, M. R., Wada, S., Myers, J. G., Ethier, C. R., 2005,
“Mass transfer and fluid flow in stenotic arteries axisymmetric and
asymmetric models”, International journal of heat and mass transfer 48,
4510-4517.
15. Kaazempur-Mofrad, M. R., Isasi, A. G., Younis, H. F., Chan, R. C.,
Kamm, R. D., Hinton, D. P., Sukhova, G., LaMuraglia, G. M.,
Lee, R. T., 2004, “Characterization of the atherosclerotic carotid
bifurcation using MRI, finite element modeling,and histology”,
Ann. Biomed. Eng. 32,932-946.
16. Ku, D. N., 1997, “Blood flow in arteries”, Annual Reviews of Fluid
Mechanics 29, 399-434.
17. Long, Q., Xu, X. Y., Ramnarine, K. V. and Hoskins, P., 2001, “Numerical
investigation of physiologically realistic pulsatile flow through arterial
stenoses”, Journal of Biomechanics 34, 1229-1242.
18. Masako, S. S., 1994, “Effect of irregularities of vessel cross-section on
vascular resistance”, Fluid Dynamics Research, 17 (1995), 1-11
19. Moayeru, M. S. and Zendehbudi, G. R., 2002, “Effects of elastic property
of the wall on flow characteristics through arterial stenoses”, Journal
of Biomechanics 36,525-535.
20. Shalman, E., Rosenfeld, M., Dgany, E., and Einav S., 2001, “Numerical
modeling of the flow in stenoses coronary artery. The relationship
between main hemodynamic parameters”, Computers in Biology and Medicine
32, 329-344.
21. Silvio Cavalcanti, 1995, “Hemodynamics of an artery with mild stenosis”,
J. Biomechanics Vol. 28 pp.387-399.
22. Stangeby, D. Kim and Either,C. Ross, 2002, “Computational analysis of
coupled blood-wall arterial LDL transport”, Journal of Biomechanical
Engineering Vol.124/1-/8.
23. Tang, L.Q. and Tsang, T.T.H., 1993, “Transient solution by a least-
squares finite element method and Jacobi conjugate gradient technique”,
submitted to Commun. Appl. Num.Methods.
24. Tang, L.Q. and Tsang, T.T.H., 1994, “A least-squares finite element
method for doubly- diffusive convection”, Int. J. Comput. Fluid Dyn.,
vol2.
25. Wada, S. and Karino, T., 2002, “Theoretical prediction of low-density
lipoproteins concentration at the luminal surface of an artery with a
multiple bend”, Ann. Biomed. Eng. 30,778-791.
26.吳豐盛學長,“應用最小平方有限元素法模擬流體經過圓球之流 況”,89年七月畢
業。
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 姚志明(2004),消費爭議與民法及消保法適用之問題—以商品買賣責任為例,月旦法學雜誌第110期,頁9以下,2004年7月。
2. 林順益(2003),解析醫護責任保險制度—並呼籲建立強制醫護責任保險制度,醫事法學雜誌第11卷第3期,第4期(合訂本), 2003年12月。
3. 邱清華(2003),醫療糾紛與消費者保護法—解困與修法,醫事法學第11卷第3期,第4期(合訂本),2003年12月。
4. 劉孔中(1996),公務部門行為適用公平交易法之範圍,政大法學評論第55期,1996年6月。
5. 楊秀儀,林欣柔(2004),告別馬偕肩難產事件?—新醫療法第八二條第二項評析,月旦法學雜誌第112期,2004年9月。
6. 楊佳元(1996),一般危害責任理論—就一般危害責任理論,探討消費者保護法之商品製造人責任與民法修正草案第一九一條之若干問題,法律評論第62卷第7-9期合刊,1996年9月。
7. 詹森林(2004),定型化契約條款效力之規範—最高法院90年台上第2011號、91年台上2220號、92年台上第39號判決之商榷,律師雜誌第293期,2004年2月。
8. 馮震宇(1998),論服務無過失之責任之爭議,中原財經法學第4期,1998年12月。
9. 馮震宇(1994),「事業」與「企業經營者」—論公平交易法與消費者保護法之責任主體,公平交易季刊第2卷第2期, 1994年4月。
10. 莊淑君(2004),醫療行為是否適用消保法?—簡介我國法院見解,萬國法律雜誌第133期,2004年2月。
11. 黃銘傑(1997),「醫藥分業」爭議中的公平交易法(上),月旦法學雜誌第24期,1997年5月。
12. 黃立(2003),板橋地院八十九年度重訴字第六五號博士的家判決評釋,月旦法學雜誌第95期,2003年4月。
13. 黃立(2003),消費者保護法第二講:我國消費者保護法之商品與服務責任(二),月旦法學教室第10期,2003年8月。
14. 黃立(2003),消費者保護法第一講:我國消費者保護法之商品與服務責任(一),月旦法學教室第8期,2003年6月。
15. 黃立(2003),消保法第七條與民法第一九一條之三對醫療行為適用之研析,政大法學評論第75期,2003年9月。