跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 02:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫毓廷
研究生(外文):Yu-Ting Sun
論文名稱:考慮隨機產品生命週期與保固策略之損耗性存貨模式
論文名稱(外文):Deteriating Inventory Model considering a Random Product Life Cycle and Warranty Policy
指導教授:黃惠民黃惠民引用關係
指導教授(外文):Hui- Ming Wee
學位類別:碩士
校院名稱:中原大學
系所名稱:工業工程研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:73
中文關鍵詞:經濟生產批量金錢的時間價值保固隨機產品生命週期損耗性存貨
外文關鍵詞:Golden section searchdiscounted cash flowKeyword: deteriorating inventoryrandom product life cycleEPQtime-value of money
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來損耗性產品之存貨模式逐漸受到重視,而指數分配經常被用來描述產品損耗特性。由於產品生命週期日益縮短和產品多元性的需求,也加速了新產品的研發速度來因應顧客需求與市場競爭。但過去並沒有太多的相關研究考慮將經濟生產批量模式結合隨機產品生產週期與金錢的時間價值來做探討,且考慮重製和瑕疵項目的保固策略與在保固期內失效品補償機制是必要的。
因此本論文主要的目的是著重在發展結合隨機產品生命週期與產品保固策略的經濟生產批量模式,同時考慮金錢的時間價值與通貨膨脹因素,並以指數分配作為隨機產品生命週期的機率分配,在模式中也加入了損耗性存貨的特性,而文中模式均以總成本現值最小化為目標函數,利用現金流量折現、一維搜尋法中的黃金分割搜尋法及電腦應用軟體,推導出最佳的生產週期及期望總成本,最後以數值範例及敏感度分析作為驗證。
In recent years, the problem of deteriorating inventory has received considerable attention. And exponential distribution is usually used to represent the distribution of deterioration. Due to the shortened product life cycle and the diversified product demand, new product development is vital to sustain customer demand and competitiveness. However, there are few current researches which take EPQ models incorporating a random product life cycle and the time-value of money into consideration. Moreover, it is necessary to consider rework and defective item as well as warranty policy which is a mechanism to compensate failures during the warranty period.

The purpose of this study is to develop a deteriorating EPQ model with a random product life cycle, free-repair warranty policy and it also considers the time-value of money effect or inflation. The product life cycle is considered to be exponentially distributed. The research developed an integrated model to minimize the present worth total cost. The Golden Section Search, a kind of One-Dimensional Search approach and a computer code are used to derive the optimal policies. Numerical examples including sensitivity analysis are presented to validate the results of the models.
目 錄

中文摘要………………………………………………........………………Ⅰ
英文摘要…………………………………………...…………….…………Ⅱ
誌謝……………………………………...……………………….…………Ⅲ
目錄…………………………...……………………………….……………Ⅳ
表目錄………………...………………………………………….…………Ⅵ
圖目錄…………...……………………………………………..…………...Ⅶ
第一章 緒論……..………………………………………….....…………1
1.1 研究背景與動機…………………………………………………1
1.2 研究目的與範圍…………………………………………………3
1.3 研究方法與步驟…………………………………………………3
1.4 論文章節概要與架構………………………….………………...4
第二章 文獻探討……………………………………………………….6
2.1  存貨基本概念……………………………………………………6
2.1.1 存貨產生的原因與存貨形式…………..……..……….6
2.1.2 存貨問題的分類………………………………….……7
2.1.3 存貨成本…………………………………………...…..8
2.2 損耗性存貨之特性與種類………………….…………………..9
2.3 考慮通貨膨脹及時間價值下之存貨模式………………..…....11
2.4 考慮產品保固期下之存貨模式…………………………..…....11
2.5 考慮隨機產品生命週期之存貨模式…………………………..12
第三章 損耗性商品在考慮產品保固期下之存貨模式………...14
3.1 基本假設與符號說明…………………………………………..14
3.1.1 基本假設…………………………...…………………14
3.1.2 符號說明………………………………….…………16
3.2 模式推導………………………………………………………..17
3.3 數值範例………………………………………………………..22
3.4 敏感度分析……………………………………………………..27
3.5 本章結論………………………………………………………..32
第四章 損耗性商品在考慮產品保固期與隨機產品生命週期下
之存貨模式……………………...…………………………...33
4.1 基本假設與符號說明…………………………………………..33
4.1.1 基本假設……………………………...………………33
4.1.2 符號說明………………………...……………………34
4.2 模式推導………………………………………………………..36
4.2.1 情況一:kT ≦ L ≦ kT + tm……….……………….36
4.2.2 情況二:kT + tm ≦ L ≦ (k+1) T…………………..40
4.2.3 歸納情況一及情況二:kT ≦ L ≦ (k+1) T……..…43
4.3 產品生命週期為指數分配的機率模式………………………..47
4.3.1 模式推導…………………….………………………..47
4.4 假設研究時間為無限長且不考慮隨機產品生命週期………...51
4.5 數值範例................................................………………………..52
4.5.1 求解產品生命週期為指數分配之存貨模式……....52
4.5.2 求解不考慮產品生命週期為隨機機率分配及假設研究時間為無限長之存貨模式………….…….……....56
4.5.3 與張維哲(2005)之模式比較………………………....59
4.6 敏感度分析……………………………………………………..60
4.7 本章結論………………………………………………………..65
第五章 結論與未來發展…………………………………………..…67
5.1 結論……………………………………………………………67
5.2 未來發展………………………………………………………68
參考文獻………………………………………..………………………...69
作者簡介………………………………………..………………………...73









表目錄

表2-1  存貨形式與存貨產生原因……………………………………...6
表 2-2 存貨問題的分類..…..…………….…………. …..……………....7
表 2-3  存貨系統中的存貨成本….………………………..………….….9
表 2-4 本研究相關之文獻整理….………………………..……………13
表3-1  運算符號說明表……………………………………………….16
表3-2  存貨模式數值表……………………………………………….22
表3-3  te範圍在[0,1],誤差為0.001,te與總成本之變化……....….25
表3-4  最佳生產週期與相對之成本………………………………….27
表3-5  各參數數據之改變幅度.……………………………………….27
表3-6  生產週期敏感度分析之變異表……………………………….28
表3-7  總成本敏感度分析之變異表………………………………….30
表4-1  運算符號說明表……………………………………………….35
表4-2  產品生命週期為指數分配機率模式下之存貨模式數值…….52
表 4-3  te範圍在[0,1],誤差為0.001,te與期望總成本之變化……….55
表 4-4  te範圍在[0,1],誤差為0.001時te與期望總成本之變化…….57
表 4-5 比較產品生命週期為指數分配與不考慮產品生命週期之最佳
生產週期與相對之成本……………………………...……….58
表 4-6  本研究與張維哲(2005)研究範圍之差異比較……….………...59
表 4-7  本研究與張維哲(2005)之差異比較………………….………...59
表4-8  各參數數據之改變幅度….....……………….………………….60
表 4-9  生產週期敏感度分析之變異表…….....……….………….……61
表 4-10 期望總成本敏感度分析之變異表……..…....………………….63
表 4-11 考慮產品生命週期為指數分配、假設產品生命為無限長及與張
維哲(2005)之綜合比較……..………………………..…..…….66












圖目錄

圖1-1 論文研究架構……………………………………………………….5
圖3-1 單一週期存貨水準與時間關係圖……..…………………………18
圖3-2 黃金分割搜尋法的邏輯演算程序圖……..………………………24
圖3-3 總成本函數隨T改變的情形……….…..…………………………26
圖3-4 相關參數對生產週期的變異圖………..…………………………29
圖3-5 相關參數對總成本的變異圖……………..………………………31
圖4-1 情況一之損耗性產品存貨水準與時間…………………………..36
圖4-2 情況二損耗性產品存貨水準與時間關係圖……………………..40
圖4-3 黃金分割搜尋法的邏輯演算程序圖……..………………………54
圖4-4 相關參數對生產週期的變異圖………..…………………………62
圖4-5 相關參數對期望總成本的變異圖………..………………………64
參考文獻

[1]王望祖,1995,「需求隨時間變動下損耗性產品之存貨模式」,私立中原大學工業工程學系碩士論文。

[2]羅時添,1997,「損耗性產品在考慮時間價值下之存貨與訂價策略」,私立中原大學工業工程學系碩士論文。

[3]張家聰,2002,「多階比例式批量排程問題-具產品生命週期階段、現金流量與市場行銷要求之模式」,私立東海大學工業工程學系碩士論文。

[4]林郁文,2003,「以產品生命週期為基礎之多世代產品競爭主動式雙贏定價模式」,私立東海大學工業工程學系碩士論文。

[5]張維哲,2005,「在隨機產品生命週期及考慮金錢的時間價值下之存貨模式」,私立中原大學工業工程學系碩士論文。

[6]顏韻純,2005,「考慮保固期及最終訂購量下建構銷售利潤最佳化模式—以筆記型電腦為例」,私立中原大學工業工程學系碩士論文。

[7]許炳輝,2005,「高科技產品存貨成本優化策略」,私立中原大學工業工程學系博士論文。

[8]羅時添,2005,「損耗性商品考慮貨幣時間價值及保固策略的整合性生產存貨模式」,私立中原大學工業工程學系博士論文。

[9]Aitken, J., Childerhouse, P., and Towill, D., 2003, “The impact of product life cycle on supply chain strategy”, International Journal of Production Economics, Vol.85, pp.127-140.

[10]Ansoff, H.I., 1984, Implanting Strategic Management, Prentice-Hall.

[11]Arcelus, F.J., and Srinivasan, G., 1998,”Costing partial order cycles the temporary sales price problem”, International Journal of Production Economics, Vol.56-57, pp.21-27.

[12]Bose, S., Goswami A., and Chaudhuri K.S., 1995, “An EOQ model for deteriorating items with linear time-dependent demand rate and Shortages under inflation and time discounting”, Journal of the Operations Research Society, Vol.46, pp.771-782.

[13]Buzacott, J. A., 1975, “Economic order quantities with inflation”,Operational Research Quarterly, Vol. 26, pp. 553-558.

[14]Chen, J.M., and Chen L.T., 2005, “Pricing and production lot-size or scheduling with finite capacity for a deteriorating item over a finite horizon”, Computers & Operations Research, Vol.32, pp.2801-2819.
[15]Chung, K.H., 1989, ”Inventory control and trade credit revisited”, Journal of the Operations Research Society, Vol.40, pp.495-498.

[16]Chung, K.J., and Lin, S.D., 1995, ”A note on the optimal cycle length with a random planning horizon”, The Engineering Economist, Vol.40, pp.385-392.

[17]Chung, K.H., and Kim, Y.H., 1989, ”Economic analysis of inventory system”, The Engineering Economist, Vol.35, pp.75-80.

[18]Ghare, P.M., and Schrader, G. F., 1963, “A model for an exponentially decaying inventory”, Journal of Industrial Engineering, Vol.14, pp.238-243.

[19]Glickman, T. S. and P. D. Berger, 1976,“Optimal price and protection period decisions for a product under warranty,”Management Science, Vol.22, pp.1381-1389 .

[20]Gurnani, C., 1983, “Economic analysis of inventory system”, International Journal of Production Research, Vol.21, pp.261-277.

[21]Gurnani, C., 1985, “Economic analysis of inventory system a reply”, International Journal of Production Research, Vol.23, pp.771-772.

[22]Hill, R.M., 1996, “Batching polices for product life cycle”, International Journal of Production Economics. Vol.45, pp.421-427.

[23] Hill, R.M., and Pakkala, T.P.M., 2005, “A discounted cash flow approach to the base stock inventory model”, International Journal of Production Economics, Vol.93-94, pp.439-445.

[24]Hariga, M.A., and Ben-Daya, M., 1996, ”Optimal time varying lot-sizing models under inflationary conditions”, European Journal Operational Research, Vol.89, pp.313-325.

[25]Haneveld, W.K., and Teunter, R.H., 1998, ”Effect of discounting and demand variability on the EOQ”, International Journal of Production Economics,Vol.54, pp.173-192.

[26]Kim, Y.H., Philippatos, G.C., and Chung, K.H., 1986, “Evaluating investments in inventory system: A net present value framework”, The Engineering Economist, Vol.31, pp.119-136.
[27]Kingsman, B.G., 1983, “The effect of payment rules on ordering and stockholding in purchasing”, Journal of the Operations Research Society, Vol.34, pp.1085-1098.

[28]Kingsman, B.G., 1991, “EOQ under data-terms supplier credit-a near optimal solution”, Journal of the Operations Research Society, Vol.42, pp.803-809.

[29]Lin, C.S., Chen C.H., and Kroll, D.E., 2003, “Integrated production-inventory models for imperfect production processes under inspection schedules”, Computers and Industrial Engineering, Vol.44, pp.633-650.
[30]Levitt, T., 1965, “Exploit the Product Life Cycle” Harvard Business Review, Vol.4, Nov.-Dec., pp.81-94.

[31]Misra, R. B., 1979, “A note on optimal inventory management under inflation”, Naval Research Logistics Quarterly, Vol. 26, pp. 161-165

[32]Moon, I., and Yun W., 1993, ”An Economic Order quantity Model with a random planning horizon”, The Engineering Economist, Vol.39, pp.77-86.

[33]Moon, I., and Lee, S., 2000, “The effects of inflation and time-value of money on an economic order quantity model with a random product life cycle”, European Journal Operational Research, Vol.125, pp.588-601.

[34]Moon, I., Giri, B. C., Ko, B., 2005, “Economic order quantity models for ameliorating /deteriorating items under inflation and time discounting,” European Journal of Operational Research, Vol.162, pp.773-785 .

[35]Nahmias, S., 1978, “Perishable inventory theory: a Review,” Operations Research, Vol.30, No.4, pp.680-708.

[36]Prasad, S., 1994, “Classification of inventory models and systems,”International Journal of Production Economics, Vol.34, pp.209-222.

[37]Rau, H., Wu, M.Y., and Wee H.M., 2003,” Integrated inventory model for deteriorating items under a multi-echelon supply chain environment”, International Journal of Production Economics, Vol.86, pp.155-168.

[38]Raafat, F., 1991, “Survey of literature on continuously deteriorating inventory models”, Journal of the Operational Research Society, Vol. 42, pp.27-37.

[39]Silver, E.A., and Pyke, D.F., 1998, Inventory Management and Production Planning and Scheduling, Third Edition, WilEY.

[40]Sheu, Shey-Huei and Chien, Yu-Hung, 2005, “Optimal burn-in time to minimize the cost for general repairable products sold under warranty”, European Journal of Operational Research, Vol.163, Issue: 2, pp.445-461.

[41]Teng J-T and G. L. Thompson, 1996,“Optimal strategies for general price-quality decision models of new products with learning production costs,”European Journal of Operational Research, Vol.93, pp.476-489.

[42]Trippi, R.R., and Lewin, D.E., 1974,”A present value formulation of classical EOQ Problem”, Decision Science, Vol.5, pp.30-35.

[43]Tersine, R.J., 1994, PRINCIPLES OF INVENTORY AND MATERIALS MANAGEMENT, Fourth Edition, Prentice-Hall.

[44]Wee, H. M., 1999, “Deteriorating inventory model with quantity discount, pricing and partial backordering”, International Journal of Production Economics Vol.59, pp.511-518.

[45]Wee, H.M., and Law, S.T., 2001,“Replenishment and pricing policy for deteriorating items taking into account the time-value of money”, International Journal of Production Economics, Vol.71, pp.213-220.

[46]Wee, H.M., 1997, “A Replenishment policy for item with a price-dependent demand and a varying rate of deterioration”, Production Planning and Control, Vol.8, pp.494-499.

[47]Wee, H.M., 1995, “Joint pricing and Replenishment policy for deteriorating inventory with declining market”, International Journal of Production Economics, Vol.40, pp.163-171.

[48]Wee, H.M., and Yang P.C., 2001, “An excess inventory model of deteriorating items taking account of present value”, The Engineering Economist, Vol.46, pp.139-152.

[49]Xu, Y., and Bhaba R.S., 2003, “Models for a family of products with shelf life, and production and shortage costs in emerging markets”, Computers & Operations Research, Vol.30, pp.925-938.

[50]Yang, P. C. and H. M. Wee, 2003, “An integrated multi-lot-size production inventory model for deteriorating item”, Computers and Operations Research Vol.30, No.5, pp.671-682.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊