跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉志宏
研究生(外文):Chi-Hung Liu
論文名稱:應用實驗設計法與電漿診斷技術探討電漿沉積氟碳膜製程之研究
論文名稱(外文):The Investigation of Process-structure-property Relationship of Plasma Deposited Fluorocarbon Films Using Design of Experiment and Plasma Diagnostics
指導教授:魏大欽
指導教授(外文):Ta-Chin Wei
學位類別:博士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:294
中文關鍵詞:實驗設計法氟碳比氟碳膜超疏水膜電漿鍍膜陰電性電漿診斷發光性膜材
外文關鍵詞:super-hydrophobicfluorocarbon filmF/C ratioplasma depositiondesign of experimentalemitting materialplasma diagnosticelectronegativity
相關次數:
  • 被引用被引用:39
  • 點閱點閱:1001
  • 評分評分:
  • 下載下載:204
  • 收藏至我的研究室書目清單書目收藏:0
氟化非晶碳膜(氟碳膜)因具極佳之物理及化學特性而廣受產學界之重視。本論文乃以電漿輔助化學氣相沉積法來製備氟碳膜,研究中藉由實驗設計法、電漿診斷技術及膜材特性分析來獲得電漿製程參數、膜材特性及電漿性質三者間相互關係,其重要研究結果如下:
應用實驗設計法探討CH2F2/CF4電漿製程參數對其製備氟碳膜性質影響發現,CF4流量及沉積溫度為影響成膜速率及膜材折射率最顯著之因子。高沉積速率可於適當CF4流量、低溫及高功率中獲得;高CF4流量、低溫及適當電漿功率條件可製備具低折射率的氟碳膜。高膜材F/C比具低折射率特性,但其熱穩定性表現較差;然而,熱穩定性可由沉積溫度提高及熱處理步驟進行改善。氟碳膜之F/C比可間接由FTIR及膜厚關係進行預測。此外,藉由參數改變及其對應膜材特性之分析數據,吾人建立電漿氟碳膜之可能成膜機制。
藉由電漿性質量測與膜材特性分析結果的交叉比較,發現隨電漿功率上升其電漿密度隨之增加亦進而提升沉積速率;隨著CF4含量(CH2F2/CF4 Plasma)提升因H原子來源相對降低,而造成沉積速率因而下降,但其薄膜氟碳比則隨CF4增加呈現上升趨勢。於氟碳電漿其它電漿性質分析中發現,低電漿功率與高操作壓力製程下具有較高的陰電性,且CH2F2亦屬高陰電性之氣體。
以C7系列氟碳單體(C7F8、C7F14及C7F16)進行電漿沉積氟碳膜之研究發現,於不同成膜先驅物鍍膜製程中其成膜速率皆隨沉積溫度提高而降低,且具芳香環或環狀結構之單體有較高沉積速率;於薄膜折射率探討中,其值隨基板溫度提高而上升。具芳香環結構之氟碳膜有較佳熱穩定性呈現,而以單體C7F8並於沉積溫度條件400℃下可獲得熱穩定性高達450℃之電漿氟碳膜;此外,由膜材性質量測發現,熱穩定性的提升可經由高沉積溫度及降低F/C比方式達到,亦可由成膜先驅物鍵結型態的選定來獲得改善。
以L-shape反應器(單體為C7F8)製備含芳香環結構之電漿聚合氟碳膜之研究顯示,單體由後輝光區導入之downstream製程的成膜速率較單體由電漿區上游導入之upstream製程為快;然而,於upstream製程中可獲得低折射率與高氟碳比之氟碳膜。於FTIR及XPS數據中,downstream製程條件下之膜材仍可保有原單體官能基(即aromatic ring structure);此外,在光學性質測試發現,downstream製程下獲得的氟碳膜具有發藍光特性,且製程中產生的氟碳球具有超疏水性質(接觸角達153o)。
Fluorinated amorphous carbon (a-C:F) films have attracted much attention in the last several decades due to their chemical stability, low surface energy, low refractive index, good electrical and thermal insulation. Plasma polymerization is one of the most popular techniques for obtaining a-C:F film with several favorable advantages such as a dry process and controlled thickness. The properties of plasma deposited a-C:F film are strongly affected by its chemical structure, which in turn, is strongly dependent on the plasma characteristics. However, few literatures reported the plasma characteristics and process-structure-property relationships of a-C:F film at the same time. In this study, the plasma diagnostics and experimental design methodology were used to characterize the plasma and elucidate the process-structure-property relationships of a-C:F film deposited in 13.56 MHz RF plasma reactor. The dissertator can be divided into four subjects and the results are summarized below.
Firstly, the experimental design methodology was used to investigate the influence of process parameters on the characteristics of fluorocarbon films deposited in CH2F2/CF4 plasma. It was found that the CF4 flow rate and substrate temperature were the most significant factors that affect the deposition rate and refractive index of the deposited film. A higher deposition rate was obtained in films deposited under moderate CF4 feed; lower substrate temperature and higher RF power conditions. The lower refractive index was obtained under higher CF4 feed; lower substrate temperature and moderate RF power conditions. It was also found that the fluorocarbon film with a higher F/C ratio was less cross-linked with a lower refractive index and less thermal stability. Potential reactions were proposed to explain the effect of process parameters on the film characteristics.
Secondly, the plasma diagnostics tools (including OES, Langmuir probe and QMS) were used to investigate the influences of operating parameters on the inductive-coupled CH2F2/CF4 plasma. It was found that CH2F2/CF4 plasma is highly electro-negative. The electron density increases with the increase of RF power, resulting in the enhancement of deposition rate. The dominant ion is CHF2+ for pure CH2F2 plasmas at low RF powers. As the input power is increased, abundant high-carbon ions are produced, C3H3F2+, C3H2F3+ and C3HF4+ ions being the dominant ones. Since the F/C atomic ratio is lower in C3 ions than in CHF2+, the F/C ratio of a-C:F film decreases as the power is increased. When 15% CF4 is added to CH2F2 plasmas, the dominant ionic species shifts to CF3+, and the most abundant C3 ions changes from C3H3F2+ to C3HF4+, which correlates to the experimental results that higher F/C ratio was found in films deposited in CH2F2 plasma with CF4 addition. Although the plasma density is not changed with increasing the CF4 flow rate, the dominant charged species become all perfluorocarbon ions when the feed contains 40% CF4, with the order of CF3+>C3F5+>C4F7+, which results in the decrease of deposition rate.
Thirdly, the aromatic C7F8, cyclic C7F14 and linear C7F16 monomers with Ar or H2 additive gas were used to deposit a-C:F film in a 13.56 MHz RF parallel plate plasma reactor. It was found that the deposition rate decreased with substrate temperature. The monomer contains unsaturated bonds had the highest deposition rate, especially the a-C:F film with F/C ratio higher than 0.8 could be obtained by C7F8/Ar plasma at 400℃ with a deposition rate of 35 nm/min. As the flow rate of hydrogen additive increased, the deposition rate increased at first, reached a maximum and then decreased in C7Fx/H2 process. But too much H2 addition dilutes the concentration of C7Fx monomers. The F/C ratio and refractive index were only slightly influenced by substrate temperature in C7Fx/Ar plasma polymer; however, they were significantly affected by substrate temperature in C7Fx/H2 plasma-deposited film. According to the FTIR and XPS spectra, the film possessed the aromatic-ring structure or the lower F/C ratio had the higher thermal stability. In addition, the TGA data indicated the thermal stability up to a temperature of 450℃ from the film deposited by C7F8 plasma at 400℃.
Finally, the aromatic C7F8 monomer was used to deposit a-C:F film in an RF plasma reactor. While keeping the argon gas inlet position fixed, the inlet position effect of the C7F8 monomer on the deposited a-C:F film characteristics was investigated. It was found that, when C7F8 entered upstream of the plasma, the deposited film possessed no aromatic structure and the deposition rate was low. The F/C ratio of the film was higher than 1.4, and the surface was smooth. For film deposited as the C7F8 entered in the afterglow (the so-called ‘downstream’ process), the deposition rate was quite high and copious amount of the aromatic structure were preserved. The F/C ratio of the film was lower than 1.0, and the surface was rough.
總目錄

摘要 I
Abstract III
誌謝 V
總目錄 VI
表目錄 XI
圖目錄 XIII
符號說明 XX

第 一 章 前言
1-1. 研究緣起 1
1-2. 研究目標與論文架構 5
參考文獻 8
第 二 章 文獻回顧
2-1. 電漿技術及基本原理 15
2-1.1 電漿生成及基本反應 17
2-1.2 電漿sheath特性 22
2-1.3 電漿鍍膜製程 28
2-2. 電漿氟碳膜相關研究文獻 34
2-2.1 電漿氟碳膜於低介電材料上之應用 34
2-2.2 電漿診斷技術於氟碳膜製備之應用 39
2-2.3 具功能性電漿氟碳膜之製備 42
參考文獻 45
第 三 章 實驗方法與分析儀器及其原理
3-1. 實驗流程與設計方法 52
3-1.1 實驗材料 52
3-1.2 論文架構與各章節之實驗架構 55
3-1.3 電漿鍍膜設備介紹 60
3-1.4 回應曲面實驗設計法之簡介 65
3-2. 分析儀器與原理 69
3-2.1 膜材特性分析 69
3-2.2 膜表面性質分析 76
3-2.3 電漿診斷系統 78
參考文獻 101
第 四 章 以實驗設計法探討電漿參數對其製備氟碳膜性質之影響
本章摘要 105
4-1. 簡介 106
4-2. 實驗方法 108
4-2.1 沉積系統 108
4-2.2 實驗設計法 108
4-2.3 膜材性質分析 111
4-3. 結果與討論 112
4-3.1 實驗數據分析 112
4-3.2 膜結構之分析 128
4-4. 結論 137
參考文獻 138
第 五 章 以電漿診斷法探討電漿沉積氟碳膜之膜材特性與其電漿性質之研究
本章摘要 143
5-1. 簡介 144
5-2. 實驗方法 145
5-2.1 鍍膜系統 145
5-2.2 膜材性質分析 148
5-2.3 電漿診斷系統 148
5-3. 結果與討論 154
5-3.1 鍍膜製程與膜結構分析 154
5-3.2 電漿性質量測 158
5-3.3 陰電性電漿特性分析 175
5-3.4 離子能量分佈特性分析 180
5-4. 結論 183
5-5. 後記:電漿反應器型式對沉積氟碳膜製程之影響 184
參考文獻 186
第 六 章 探討電漿沉積氟碳膜成膜先驅物鍵結型態對膜材性質之影響
本章摘要 191
6-1. 簡介 192
6-2. 實驗步驟 193
6-2.1 鍍膜系統 193
6-2.2 膜材性質分析 195
6-3. 結果與討論 195
6-3.1 鍍膜製程與膜結構分析 196
6-3.2 膜材特性分析 205
6-4. 結論 213
參考文獻 214
第 七 章 以Ar/C7F8電漿製備氟碳膜之研究
本章摘要 218
7-1. 簡介 219
7-2. 實驗方法 222
7-2.1 沉積系統 222
7-2.2 膜材性質分析 224
7-3. 結果與討論 225
7-3.1 沉積製程與膜結構分析 225
7-3.2 膜材特性分析 232
7-3.3 電漿氟碳膜應用測試 241
7-4. 結論 246
7-5. 後記:電漿反應器型式對沉積氟碳膜之結構差異 247
參考文獻 250
第 八 章 結論與建議 254


附錄A 鍍膜系統再現性製程 257
附錄B 液態單體流量校正與其FTIR頻譜圖 259
附錄C 電漿鍍膜系統均勻度測試 262
附錄D 四極質譜儀偵測器對離子質量敏感性校正 265
附錄E 電漿氟碳膜於感測器應用測試 267

作者簡述 269

表目錄

Table 1-1 Paper review on plasma deposition a-C:F film---3
Table 2-1 Comparison of plasma polymerization with conventional polymerization---28
Table 2-2 Paper review on a-C:F film by PECVD---37
Table 3-1 FTIR absorption bands for a-C:F films---71
Table 3-2 Comparison of AFM operation modes---77
Table 4-1 Deposition conditions and responses of a-C:F films from the DOE---109
Table 4-2 Definitions and levels of factors in the DOE---110
Table 4-3 The t-value and probability for the main factors and interaction effects in the deposition rate discussion---113
Table 4-4 The t-value and probability for the main factors and interaction effects in the refractive index discussion---114
Table 4-5 Potential reactions in CH2F2/CF4 plasma---121
Table 5-1 Deposition conditions and characteristics of a-C:F films---147
Table 5-2 Diagnostic conditions and results of probe diagnostics---149
Table 5-3 Mass spectra of positive ions collected in CH2F2 plasmas under various CH2F2/CF4 ratios---174
Table 6-1 Deposition conditions and results of a-C:F films---194
Table 6-2 Comparison of C1s XPS spectra of the filmat various precursors---204
Table 6-3 Adhesion test results---209
Table 7-1 Film structure of a-C:F film deposited in upstream and downstream processes under various positions by FTIR analysis (Condition: C7F8/Ar=10/2.5, 36 W, 200 mTorr)---231
Table 7-2 Elemental composition, refractive index and contact angle of a-C:F film at various positions---233
Table 7-3 Percentage of integrated peak areas for deconvoluted C1s XPS spectra (Condition: C7F8/Ar=10/2.5, 36 W, 200 mTorr)---237
Table 7-4 Comparion of the film structure by the FTIR analysis---248

圖目錄

Figure 2-1 Schematic diagram of reactions occurred in a
plasma reactor. 21
Figure 2-2 Characteristics of sheath and presheath in contact
with a wall. 24
Figure 2-3 Boundary between polymerizing and etching condition
as a function of F/C ratio of the monomer. 30
Figure 2-4 Schematic representation of step growth mechanism
of plasma polymerization. 32
Figure 2-5 Overall mechanism of plasma polymerization. 33
Figure 3-1 Main experimental flow chart. 55
Figure 3-2 Experimental flow chart of chapter 4. 56
Figure 3-3 Experimental flow chart of chapter 5. 57
Figure 3-4 Experimental flow chart of chapter 6. 58
Figure 3-5 Experimental flow chart of chapter 7. 59
Figure 3-6 Schematic diagram of CCP-CVD system. 60
Figure 3-7 Flow rate of C7F8 as a function of scale of metering valve. 62
Figure 3-8 Schematic diagram of ICP-CVD system. 63
Figure 3-9 Schematic diagram of L-shape reactor. 64
Figure 3-10 The MIS(Al/a-C:F/Si wafer)structure. 70
Figure 3-11 Example of the C1s XPS spectra of a-C:F film. 73
Figure 3-12 Example of contact angle result. 76
Figure 3-13 Schematic diagram of OES system. 78
Figure 3-14 Energy levels of nitrogen plasma. 79
Figure 3-15 Schematic diagram of Langmuir probe system. 81
Figure 3-16 Typical I-V characteristic for a Langmuir probe. 84
Figure 3-17 Sheah thickness of thin sheath theory. 85
Figure 3-18 Sheah thickness of thick sheath theory. 89
Figure 3-19 Step by step analysis of probe I-V curve. 92
Figure 3-20 Electron energy probability functions of the CH2F2 plasma. 93
Figure 3-21 Schematic view of the quadrupole mass spectrometer. 94
Figure 3-22 Schematic view of the quadrupole mass filter. 96
Figure 3-23 Schematic diagram secondary electron multiplier. 97
Figure 3-24 Schematic view of the ion energy analyzer. 98
Figure 4-1 Prediction profiles of the deposition rate for
a-C:F films as a function of the process parameters. 116
Figure 4-2 Comparison of the experimentally observed
deposition rate with the rate predicted using Eq. 4-3. 117
Figure 4-3 Response surface contours for the deposition rate as
a function of two factors at a time. (a) CF4 flow rate and
substrate temperature, RF power = 0, pressure = 0; (b) RF power
and substrate temperature, CF4 flow rate = 0, pressure = 0. 119
Figure 4-4 Prediction profiles of the refractive index for
a-C:F films as a function of the process parameters. 124
Figure 4-5 Comparison of experimentally observed refractive index
with the refractive index predicted using Eq. 4-4. 125
Figure 4-6 Response surface contours for refractive index as
a function of two factors at a time. (a) CF4 flow rate and RF power,
pressure = 0, substrate temperature = 0; (b) CF4 flow rate and
substrate temperature, RF power = 0, pressure = 0. 127
Figure 4-7 FTIR spectra of a-C:F film under various conditions. 131
Figure 4-8 The C1s XPS spectra of a-C:F film under various conditions;
(a), (b), (c) and (d) show the effect of CF4 flow rate, RF power,
pressure and substrate temperature, respectively. 133
Figure 4-9 The refractive index and shrinkage in a-C:F film as
a function of the film’s F/C ratio. Shrinkage (%) = (b-a)/b×100,
where b and a are the film thickness before and after the annealing
process, respectively. Symbols (a) to (g) represent the deposition
conditions listed in Fig. 4-7. 135
Figure 4-10 The F/C ratio and contact angle of as-deposited film
versus normalized CFx vibrations FTIR intensity. 136
Figure 5-1 Schematic diagram of ICP-CVD system. 146
Figure 5-2 OES spectra of the CF4, CH2F2 and
CH2F2/40%CF4 plasmas. 150
Figure 5-3 Mass spectra of positive ions collected
in pure CH2F2 plasma. 151
Figure 5-4 Variation of deposition rate and film structure
of a-C:F films under various input powers. 155

Figure 5-5 Variation of deposition rate and film structure
of a-C:F films under various pressures. 156
Figure 5-6 Variation of deposition rate and film structure
of a-C:F films with CF4 feed percentages. 157
Figure 5-7 Electron density and temperature in CH2F2 plasma
as a function of ICP power. 158
Figure 5-8 Effect of discharge parameter ((a) Power,
(b) Pressure, (c) CH2F2/CF4 ratio) on the EEPF in the CH2F2 plasma. 160
Figure 5-9 Relative intensity of CH, C2, H and F
under various powers. 161
Figure 5-10 Mass spectra of positive ions collected
in CH2F2 plasmas under various powers. 163
Figure 5-11 Relative ion concentration in CH2F2 plasmas
under various powers. (C3M5+:C3H3F2+、C3H2F3+、C3HF4+
and C3F5+; C4M7+:C4H2F5+、C4HF6+ and C4F7+) 164
Figure 5-12 Electron density and temperature in CH2F2 plasma
as a function of the pressure. 165
Figure 5-13 Relative ion concentration in CH2F2 plasmas
under various pressures. (C3M5+:C3H3F2+、C3H2F3+、C3HF4+
and C3F5+; C4M7+:C4H2F5+、C4HF6+ and C4F7+) 166
Figure 5-14 Mass spectra of positive ions collected
in CH2F2 plasmas under various pressures. 167
Figure 5-15 Relative intensity of CH, C2, H and F
under various pressures. 168

Figure 5-16 Electron density and temperature in CH2F2/CF4 plasma
as a function of the CF4 feed percentage. 169
Figure 5-17 Relative intensity of CH, C2, H and F
under various CH2F2/CF4 ratios. 171
Figure 5-18 Mass spectra of positive ions collected
in CH2F2/CF4 plasmas. 173
Figure 5-19 Electron density and temperature in Ar plasma
as a function of the power. 176
Figure 5-20 Positive ion density and electronegativity in CH2F2
plasma as a function of the discharge parameter.
(a) Power, (b) Pressure. 177
Figure 5-21 Positive ion density and electronegativity
in CH2F2/CF4 plasma as a function of the CF4 feed percentage. 178
Figure 5-22 Sheath voltage drop in CH2F2 plasma as a function
of the discharge parameters. (a) Power, (b) Pressure,
(c) CH2F2/CF4 ratio. 179
Figure 5-23 Ion energy distributions in CH2F2 plasma as a function
of the discharge parameter. (a) Power, (b) Pressure. 182
Figure 6-1 Effect of precursor F/C ratio on the resultant F/C ratio
in the film. 196
Figure 6-2 Variation of the film deposition rate with
substrate temperature at various precursors. 198
Figure 6-3 Variation of the film deposition rate
with hydrogen flow rate. 201
Figure 6-4 FTIR spectra of the film at various precursors. 202
Figure 6-5 The C1s XPS spectra of the film at various precursors. 203
Figure 6-6 Variation of the film refractive index with
substrate temperature at various precursors. 205
Figure 6-7 Refractive index as a function of
as-deposit film’s F/C ratio. 207
Figure 6-8 Shrinkage as a function of as-deposit film F/C ratio. 210
Figure 6-9 The cross-linking degree and F/C ratio in a-C:F film
as a function of hydrogen flow rate. 211
Figure 6-10 Thermo-gravimetric analytic data of a-C:F film
deposited at various conditions. 212
Figure 7-1 Schematic diagram of L-shape reactor. 223
Figure 7-2 Deposition rate of a-C:F film as a function
of relative position to RF electrode. 226
Figure 7-3 FTIR spectra of a-C:F film at various positions.
(a) upstream process; (b) downstream process. 230
Figure 7-4 XPS spectra of a-C:F film at various positions. 235
Figure 7-5 The C1s XPS spectra of a-C:F film under
various processes at position a. (Condition: C7F8/Ar=10/2.5,
36 W, 200 mTorr.) 236
Figure 7-6 SEM images of a-C:F film at various positions. 239
Figure 7-7 AFM images of a-C:F film at various positions. 240
Figure 7-8 PL spectra from the a-C:F film deposited at both processes. 242
Figure 7-9 SEM images of a-C:F powder at downstream process. 243
Figure 7-10 Contact angle test of a-C:F film at downstream process. 244
Figure 7-11 TEM image from the a-C:F powder deposited
at downstream process. 244
Figure 7-12 FTIR spectra of a-C:F film at various powers. 249
Figure A-1 Cleanness of the probe tip on the I-V characteristic
for CH2F2 plasma. 258
Figure B-1 Flow rate of C7F8 as a function of scale of metering valve. 259
Figure B-2 Flow rate of C7F14 as a function of scale of metering valve. 260
Figure B-3 Flow rate of C7F16 as a function of scale of metering valve. 260
Figure B-4 FTIR spectra under various conditions. 261
Figure C-1 The uniformity test of CCP-CVD system.
(a) CH2F2/CF4=8/2, 150 W, 300 mTorr, Tsub.=150℃,
(b) deposition time=10 min; (b) C7F8/Ar=10/5, 150 W, 300 mTorr,
(c) Tsub.=150℃, deposition time=5 min. 262
Figure C-2 The uniformity test of ICP-CVD system. (CH2F2=20,
200 W, 9 mTorr, Tsub.=50℃, deposition time=12 min) 263
Figure C-3 ICP-CVD system uniformity test by the probe. 264
Figure D-1 Detector sensitivity of QMS as a function of the ion mass. 266
Figure E-1 The alcohol sensor test of a-C:F film.
(a) Response time; (b) Repeatability. 268
第一章
【1】 M. Horie, “Plasma-structure dependence of the growth mechanism of plasma-polymerized fluorocarbon films with residual radicals”, J. Vac. Sci. Technol. A13 (1995) 2490.
【2】 G. H. Yang, S. W. Oh, E. T. Kang, K. G. Neoh, “Plasma polymerization and deposition of liner, cyclic and aromatic fluorocarbon on (100)-oriented single crystal silicon substrates”, J. Vac. Sci. Technol. A 20 (2002) 1955.
【3】 A. Grill, V. Patel and C. Jahnes, “Novel low k dielectric based on diamondlike carbon material”, J. Electrochem. Soc. 145 (1998) 1649.
【4】 Y. Ma, H. Yang, J. Guo, C. Sathe, A. Agui, and J. Nordgren, “Structural and electronic properties of low dielectric constant fluorinated amorphous carbon films”, Appl. Phys. Lett. 72 (1998) 3353.
【5】 S. Takeishi, H. Kudo, R. Shinohara, S. Fukuyama, J. Yamaguchi, and M. Yamada, “Plasma-enhanced chemical vapor deposition of fluorocarbon films with high thermal resistance and low dielectric constants”, J. Electrochem. Soc. 144 (1997) 1797.
【6】 K. Endo, T. Tatsumi, and Y. Matsubara, “Effect of bias addition on the gap-filling properties of fluorinated amorphous carbon thin films grown by helicon wave plasma-enhanced chemical vapor deposition”, Jpn. J. Appl. Phys. 35 (1996) L1348.
【7】 K. K. S. Lau, S. K. Murthy, H. G. P. Lewis, J. A. Caulfield, and K. K. Gleason, “Fluorocarbon dielectrics via hot filament chemical vapor deposition”, J. Fluorine Chem. 122 (2003) 93.
【8】 J. Hopkins and J. P. S. Badyal, “CF4 Glow Discharge Modification of CH4 Plasma Polymer Layers Deposited onto Asymmetric Polysulfone Gas Separation Membranes”, Langmuir 12 (1996) 4205.
【9】 S. Oh, Y. Zeng, J. K. Koo, and W. P. Zurawsky, “Permeation of simple gases through plasma polymerized films from fluorine-containing monomers” J. Appl. Polym. Sci. 57 (1995) 1277.

【10】 M. Grischke, K. Bewilogua, K. Trojan, and H. Dimigen, “Application oriented modifications of deposition processes for diamond-like-carbon based coatings”, Surf. Coat. Technol. 74-75 (1995) 739.
【11】 Y. Zhang, E. T. Kang, K. G. Neoh, W. Huang, A. C. H. Huan, H. Zhang, and R. N. Lamb, “Surface modification of polyimide films via plasma polymerization and deposition of allylpentafluorobenzene”, Polymer 43 (2002) 7279.
【12】 P. Favia, G. Cicala, A. Milella, F. Palumbo, P. Rossini, and R. d’Agostino, “Deposition of super-hydrophobic fluorocarbon coating in modulated RF glow discharge”, Surf. Coat. Technol. 169-170 (2003) 609.
【13】 L. S. Hung, L. R. Zheng, and M. G. Mason, ”Anode modification in organic light-emitting diodes by low-frequency plasma polymerization on CHF3”, Appl. Phys. Lett. 78 (2001) 673.
【14】 S. J. Limb, K. Gleason, D. J. Edell, and E. F. Gleason, “Flexible fluorocarbon wire coatings by pulsed plasma enhance chemical vapor deposition”, J. Vac. Sci. Technol. A15 (1997) 1814.
【15】 S. H. Lee, C. S. Lee, D. S. Shin, B. G. Kim, Y. S. Lee, and Y. K. Kim, “Micro protein patterning using a lift-off process with fluorocarbon thin film”, Sens. Actuators B99 (2004) 623.
【16】 C. A. Chang, Y. K. Kim, and A. G. Schrott, “Adhesion studies of metals on fluorocarbon polymer films”, J. Vac. Sci. Technol. A8 (1990) 3304.
【17】 P. K. Wu, G. R. Tang, X. F. Ma, and T. M. Lu, “Interaction of amorphous fluoropolymer with metal”, Appl. Phys. Lett. 65 (1994) 508.
【18】 T. Nason, J. A. Moore, and T. M. Lu, “Deposition of amorphous fluoropolymer thin films by thermolysis of Teflon amorphous fluoropolymer”, Appl. Phys. Lett. 60 (1992) 1866.
【19】 G. B. Blanchet, “Deposition of amorphous fluoropolymers thin films by laser ablation”, Appl. Phys. Lett. 62 (1993) 479.
【20】 G. Tang, X. Ma, M. Sun, and X. Li, “Mechanical characterization of ultra-thin fluorocarbon films deposited by R.F. magnetron sputtering”, Carbon 43 (2005) 345.
【21】 J. W. Yi, Y. H. Lee, and B. Farouk, “Low dielectric fluorinated amorphous carbon carbon thin films grown from C6F6 and Ar plasma”, Thin Solid Films 374 (2000) 103.
【22】 K. Endo and T. Tatsumi, “Fluorinated amorphous carbon thin films grown by plasma enhanced chemical vapor deposition for low dielectric constant interlayer dielectrics”, J. Appl. Phys. 78 (1995) 1370.
【23】 K. Endo and T. Tatsumi, “Fluorinated amorphous carbon thin films grown by helicon plasma enhanced chemical vapor deposition for low dielectric constant interlayer dielectrics”, Appl. Phys. Lett. 68 (1996) 2864.
【24】 K. Endo, T. Tatsumi, and Y. Matsubara, “Deposition of silicon dioxide films on amorphous carbon films by plasma enhanced chemical vapor for low dielectric constant interlayer dielectrics”, Appl. Phys. Lett. 70 (1997) 1078.
【25】 K. Endo, T. Tatsumi, Y. Matsubara, and T. Horiuchi, “Application of fluorinated amorphous carbon thin films for low dielectric constant interlayer dielectrics”, Jpn. J. Appl. Phys. 37 (1998) 1809.
【26】 劉志宏, “低介電常數材料製備與蝕刻製程之研究”, 中原大學 化學工程學系 碩士論文 (2000).
【27】 C. B. Labelle and K. K. Gleason, “Pulsed plasma-enhanced chemical vapor deposition from CH2F2, C2H2F4, and CHClF2”, J. Vac. Sci. Technol. A17 (1999) 455.
【28】 K. K. S. Lau and K. K. Gleason, “Solid-state nuclear magnetic resonance spectroscopy of low dielectric constant films from pulsed hydrofluoricarbon plasmas”, J. Electrochem. Soc. 146 (1999) 2625.
【29】 C. I. Butoi, N. M. Mackie, L. J. Gamble, D. G. Castner, J. Barnd, A. M. Miller, and E. R. Fisher, “Deposition of highly ordered CF2-rich films using continuous wave and pulsed hexafluoropropylene oxide plasmas”, Chem. Mater. 12 (2000) 2014.
【30】 I. T. Martin, G. S. Malkov, C. I. Butoi, and E. R. Fisher, “Comparison of pulsed and downstream deposition of fluorocarbon material from C3F8 and c-C4F8 plasma”, J. Vac. Sci. Technol. A22 (2004) 227.
【31】 T. Shirafuji, A. Kamisawa, T. Shimasaki, Y. Hayashi, and S. Nishino, “Plasma enhanced chemical vapor deposition of thermally stable and low-global-warming-potential gas C5F8”, Thin Solid Films 374 (2000) 256.
【32】 B. Hanyaloglu, A. Aydinli, M. Oye, and E. S. Aydi, “Low dielectric constant Parylene-F-like films for intermetal dielectric applications”, Appl. Phys. Lett. 74 (1999) 606.
【33】 B. Cruden, K. Chu, K. Gleason, and H. Sawin, “Thermal decomposition of low dielectric constant pulsed plasma fluorocarbon films II. Effect of postdeposition annealing and ambients”, J. Electrochem. Soc. 146 (1999) 4590.
【34】 U. Muller, R. Hauert, B. Oral, and M. Tobler, “Temperature stability of fluorinated amorphous hydrogenated carbon films”, Surf. Coat. Technol. 76-77 (1995) 367.

【35】 H. Yang, T. Nguyen, Y. Ma, and S. T. Hsu, “Significant improvement of thermal stability on low-k fluorinated amorphous carbon: two approaches”, DUMIC Conference (1998) 38.
【36】 H. Yokomichi and A. Masuda, “Effects of double bonding configurations on thermal stability of low-hydrogen concentration fluorinated amorphous carbon thin-films with low dielectric constant prepared by sputtering with hydrogen dilution”, Vacuum 59 (2000) 771.
【37】 D. Koshel, H. Ji, B. Terreault, A. Côtė, G. G. Ross,G. Abel, and M. Bolduc, “Characterization of CFx films plasma chemically deposited from C3F8/C2H2 precursors”, Surf. Coat. Technol. 173 (2003) 161.
【38】 J. E. Chase and F. J. Boerio, “Deposition of plasma polymerized perfluoromethylene-dominated films showing oil-repellency”, J. Vac. Sci. Technol. A21 (2003) 607.
【39】 S. F. Durrant and M. A. B. de Moraes, “Fluorine-containing amorphous hydrogenated carbon films”, Thin Solid Films 277 (1996) 115.
【40】 T. Nakano and S. Samukawa, “Effects of Ar dilution on the optical emission spectra of fluorocarbon ultrahigh-frequency plasma: C4F8 vs CF4”, J. Vac. Sci. Technol. A17 (1999) 686.

【41】 F. Gaboriau, M. C. Peignon, G. Cartry, L. Rolland, D. Eon, C. Cardinaud, and G. Turban, “Langmuir probe measurements in an inductively coupled plasma: electron energy distribution functions in polymerizing fluorocarbon gases used for selective etching of SiO2”, J. Vac. Sci. Technol. A20 (2002) 919.
【42】 S. A.graharam, D. W. Hess, P. A. Kohl, and S. A. B. Allen, “Plasma chemistry in fluorocarbon film deposition from pentafluoroethane/argon mixtures”, J. Vac. Sci. Technol. A17 (1999) 3256.
【43】 X. Li, L. Ling, X. Hua, G. S. Oehrlein, Y. Wang, A. V. Vasenkov, and M. J. Kushner, “Properties of C4F8 inductively coupled plasmas. I. Studies of Ar/c-C4F8 magnetically confined plasmas for etching of SiO2”, J. Vac. Sci. Technol. A22 (2004) 500.
第二章
【1】 A. Grill, Cold Plasma in Materials Fabrication, IEEE Press, New York, 1994.
【2】 I. B. Chapman, Glow Discharge Process: Sputtering and Plasma Etching, New York, J. Wiley & Sons, 1980, Chapter 1.
【3】 洪昭南、郭有斌, “電漿反應器與原理”, 化工技術 9 (2001) 156.
【4】 楊順文, “電漿聚合碳氮層-TPX複合膜應用於氧氮分離膜之應用”, 中原大學 化學工程學系 碩士論文 (2002).
【5】 M. A. Lieberman and A. J. Lichtenberg, Principles os Plasma Discharges and Materials Processing, New York, J. Wiley & Sons, 1994, Chapter 6.
【6】 E. Kawamura, V. Vahedi, M. A. Lieberman, and C. K. Birdsall, “Ion energy distributions in RF sheaths; review, analysis and simulation”, Plasma Sources Sci. Technol. 8 (1999) R45.
【7】 R. d’Agostino, F. Cramarossa, F. Fracassi, and F. Illuzzi, in: R. d’Agostino (Ed.), Plasma Deposition, Treatment, and Etching of Polymers, Academic Press, Boston, 1990, Chapter 2.
【8】 H. Yasuda, Plasma Polymerization, Academic Press, New York, 1985.

【9】 K. Endo and T. Tatsumi, “Fluorinated amorphous carbon thin films grown by plasma enhanced chemical vapor deposition for low dielectric constant interlayer dielectrics”, J. Appl. Phys. 78 (1995) 1370.
【10】 K. Endo and T. Tatsumi, “Amorphous carbon thin films containing benzene rings for use as low-dielectric-constant interlayer dielectrics”, Appl. Phys. Lett. 70 (1997) 2616.
【11】 K. Endo and T. Tatsumi, “Fluorinated amorphous carbon thin films grown by helicon plasma enhanced chemical vapor deposition for low dielectric constant interlayer dielectrics”, Appl. Phys. Lett. 68 (1996) 2864.
【12】 K. Endo, T. Tatsumi, and Y. Matsubara, “Effect of bias addition on the gap-filling properties of fluorinated amorphous carbon thin films grown by helicon wave plasma-enhanced chemical vapor deposition”, Jpn. J. Appl. Phys. 35 (1996) L1348.
【13】 K. Endo, T. Tatsumi, Y. Matsubara, and T. Horiuchi, “Application of fluorinated amorphous carbon thin films for low dielectric constant interlayer dielectrics”, Jpn. J. Appl. Phys. 37 (1998) 1809.
【14】 M. Horie, “Plasma-structure dependence of the growth mechanism of plasma-polymerized fluorocarbon films with residual radicals”, J. Vac. Sci. Technol. A13 (1995) 2490.

【15】 S. Takeishi, H. Kudo, R. Shinohara, S. Fukuyama, J. Yamaguchi, and M. Yamada, “Plasma-enhanced chemical vapor deposition of fluorocarbon films with high thermal resistance and low dielectric constants”, J. Electrochem. Soc. 144 (1997) 1797.
【16】 A. Grill, V. Patel, and C. Jahnes, “Novel low k dielectric based on diamondlike carbon material”, J. Electrochem. Soc. 145 (1998) 1649.
【17】 A. M. Hynes, M. J. Shenton, and J. P. S. Badyal, “Pulsed plasma polymerization of perfluorocyclohexane”, Macromolecules 29 (1996) 4220.
【18】 S. J. Limb, K. Gleason, D. J. Edell, and E. F. Gleason, “Flexible fluorocarbon wire coatings by pulsed plasma enhance chemical vapor deposition”, J. Vac. Sci. Technol. A15 (1997) 1814.
【19】 C. B. Labelle and K. K. Gleason, “Pulsed plasma-enhanced chemical vapor deposition from CH2F2, C2H2F4, and CHClF2”, J. Vac. Sci. Technol. A17 (1999) 455.
【20】 L. M. Han, R. B. Timmons, W. W. Lee, Y. Chen, and Z. Hu, “Pulsed plasma polymerization of pentafluorostyrene: Synthesis of low dielectric constant films”, J. Appl. Phys. 84 (1998) 439.

【21】 L. M. Han, R. B. Timmons, and W. W. Lee, ”Pulsed plasma polymerization of an aromatic perfluorocarbon monomer: Formation of low dielectric constant, high thermal stability films”, J. Vac. Sci. Technol. B18 (2000) 799.
【22】 C. I. Butoi, N. M. Mackie, L. J. Gamble, D. G. Castner, J. Barnd, A. M. Miller, and E. R. Fisher, “Deposition of highly ordered CF2-rich films using continuous wave and pulsed hexafluoropropylene oxide plasmas”, Chem. Mater. 12 (2000) 2014.
【23】 I. T. Martin, G. S. Malkov, C. I. Butoi, and E. R. Fisher, “Comparison of pulsed and downstream deposition of fluorocarbon material from C3F8 and c-C4F8 plasma”, J. Vac. Sci. Technol. A22 (2004) 227.
【24】 J. W. Yi, Y. H. Lee, and B. Farouk, “Low dielectric fluorinated amorphous carbon carbon thin films grown from C6F6 and Ar plasma”, Thin Solid Films 374 (2000) 103.
【25】 T. W. Mountsier and J. A. Samuels, “Precursor selection for plasma deposited fluorinated amorphous carbon films”, Thin Solid Films 332 (1998) 362.
【26】 K. S. Chen, M. R. Yang, and S. T. Hsu, “Fabrication and characterization of fluorine-containing films using plasma polymerization of octafluorotoluene”, Mater. Chem. Phys. 61 (1999) 214.
【27】 S. Samukawa and T. Mukai, “Differences in radical generation due to chemical bonding of gas molecules in a high-density plasma: Effect of the C=C bond in fluorocarbon gases”, J. Vac. Sci. Technol. A17 (1999) 2463.
【28】 T. Nakano and S. Samukawa, “Effects of Ar dilution on the optical emission spectra of fluorocarbon ultrahigh-frequency plasma: C4F8 vs CF4”, J. Vac. Sci. Technol. A17 (1999) 686.
【29】 A. N. Goyette, Y. Wang, M. Misakian, and S. Samukawa, “Ion fluxes and energies in inductively coupled radio-frequency discharges containing C2F6 and c-C4F8”, J. Vac. Sci. Technol. A18 (2000) 2785.
【30】 S. Agraharam, D. W. Hess, P. A. Kohl, and S. A. B. Allen, “Comparison of plasma chemistries and structure-property relationships of fluorocarbon films deposited from octafluorocyclobutane and pentafluoroethane monomers”, J. Vac. Sci. Technol. A19 (2001) 439.
【31】 G. H. Yang, S. W. Oh, E. T. Kang, K. G. Neoh, “Plasma polymerization and deposition of liner, cyclic and aromatic fluorocarbon on (100)-oriented single crystal silicon substrates”, J. Vac. Sci. Technol. A20 (2002) 1955.

【32】 C. Bilou, I. A. Bilou, Y. Sakai, Y. Suda, and A. Ohta, “Amorphous fluorocarbon polymer (a-C:F) films obtained by plasma enhanced chemical vapor deposition from perfluoro-octane (C8F18) vapor I: Deposition, morphology, structural and chemical properties”, J. Vac. Sci. Technol. A22 (2004) 13.
【33】 E. C. Benck, A. Goyette, and Y. Wang, “Ion energy distribution and optical measurements in high-density, inductively coupled C4F6 discharges”, J. Appl. Phys. 94 (2003) 1382.
【34】 Y. Zhang, E. T. Kang, K. G. Neoh, W. Huang, A. C. H. Huan, H. Zhang, and R. N. Lamb, “Surface modification of polyimide films via plasma polymerization and deposition of allylpentafluorobenzene”, Polymer 43 (2002) 7279.
【35】 P. Favia, G. Cicala, A. Milella, F. Palumbo, P. Rossini, and R d’Agostino, “Deposition of super-hydrophobic fluorocarbon coating in modulated RF glow discharge”, Surf. Coat. Technol. 169-170 (2003) 609.
【36】 G. Cicala, A. Milella, F. Palumbo, P. Favia, and R. d’Agostino, “Morphological and structural study of plasma deposited fluorocarbon films at different thicknesses”, Diamond and Related Materials 12 (2003) 2020.
【37】 J. X. Tang, Y. Q. Li, L. R. Zheng, and L. S. Hung, “Anode/organic interface modification by plasma polymerized fluorocarbon films”, J. Appl. Phys. 95 (2004) 4397.
【38】 C. B. Labella, R. Opila, and A. Kornblit, “Plasma deposition of fluorocarbon thin films from c-C4F8 using pulsed and continuous rf eccitation”, J. Vac. Sci. Technol. A23 (2005) 190.
【39】 C. Seoul and W. J. Song, “Polymer light-emitting devices with poly (2-decyloxy-1, 4-phenylene)”, Opt. Eng. 39 (2000) 652.
【40】 C. Seoul and W. J. Song, “Polymer light-emitting devices based on plasma-polymerized benzene and plasma-polymerized naphthalene”, Journal of Materials Science: Materials in Electronics 12 (2001) 51.
第三章
【1】 G. E. Box and K. B. Wilson, “On the experimental attainment optimum conditions”, J. Roy. Statist. Soc. B13 (1951) 1.
【2】 D. C. Montgomery, Design and Analysis of Experiments, 5th ed. John Wiley & Sons, New York, 1997, Chapter 11.
【3】 T. A. Kircher, B. G. McMoride, and K. Richards, “Use of experimental designs to evaluate formation of aluminide and platinum aluminide coatings”, Surf. Coat. Technol. 108-109 (1998) 24.
【4】 S. Agarwala, O. King, S. Horst, R. Wilson, D. Stone, M. Dagenais, and Y. J. Chen, “Response surface study of inductively coupled plasma etching of GaAs/AlGaAs in BCl3/Cl2”, J. Vac. Sci. Technol. A17 (1999) 52.
【5】 JMP® Statistics and Graphic guide, Ver. 3.2, SAS Institute, Inc. (1997).
【6】 T. Nakano and T. Ohta, “Relationship between chemical composition and film properties of organic spin-on glass”, J. Electrochem. Soc. 142 (1995) 918.
【7】 C. B. Labelle and K. K. Gleason, “Pulsed plasma-enhanced chemical vapor deposition from CH2F2, C2H2F4, and CHClF2”, J. Vac. Sci. Technol. A17 (1999) 445.

【8】 J. W. Yi, Y. H. Lee, and B. Farouk, “Low dielectric fluorinated amorphous carbon carbon thin films grown from C6F6 and Ar plasma”, Thin Solid Films 374 (2000) 103.
【9】 G. H. Yang, S. W. Oh, E. T. Kang, and K. G. Neoh, “Plasma polymerization and deposition of liner, cyclic and aromatic fluorocarbon on (100)-oriented single crystal silicon substrates”, J. Vac. Sci. Technol. A20 (2002) 1955.
【10】 J. E. Chase and F. J. Boerio, “Deposition of plasma polymerized perfluoromethylene-dominated films showing oil-repellency”, J. Vac. Sci. Technol. A21 (2003) 607.
【11】 L. M. Han, R. B. Timmons, and W. W. Lee, ”Pulsed plasma polymerization of an aromatic perfluorocarbon monomer: Formation of low dielectric constant, high thermal stability films”, J. Vac. Sci. Technol. B18 (2000) 799.
【12】 C. Bilou, I. A. Bilou, Y. Sakai, Y. Suda, and A. Ohta, “Amorphous fluorocarbon polymer (a-C:F) films obtained by plasma enhanced chemical vapor deposition from perfluoro-octane (C8F18) vapor I: Deposition, morphology, structural and chemical properties”, J. Vac. Sci. Technol. A22 (2004) 13.
【13】 王志方 著, 材料表面測定技術 (1999) 143.

【14】 R. d’Agostino, F. Cramarossa, F. Fracassi, and F. Illuzzi, in R. d’Agostino (ed.), Plasma Deposition, Treatment and Etching of Polymers, Academic Press, Boston, MA, 1990, Chapter 2.
【15】 楊順文, “電漿聚合碳氮層-TPX複合膜應用於氧氮分離膜之應用”, 中原大學 化學工程學系 碩士論文 (2002).
【16】 張秋萍, “微波電漿輔助化學氣相沉積法合成碳奈米管之研究”, 中原大學 化學工程學系 碩士論文 (2003).
【17】 高正雄 譯著, 電漿化學 (1997) 165.
【18】 P. Tristant, Z. Ding, Q. B. T. Vinh, H. Hidalgo, J. L. Jauberteau, J. Desmaison, and C. Dong, “Microwave plasma enhanced CVD of aluminum oxide films: OES diagnostics and influence of the RF bias”, Thin Solid Films 390 (2001) 51.
【19】 J. W. Coburn and M. J. Chen, “Optical emission spectroscopy of reactive plasmas: a method for correlating emission intensities to reactive particle density”, J. Appl. Phys. 51 (1980) 3134.
【20】 談文毅, “簡介電漿診斷技術在半導體工業上的應用”, 電子月刊 2 (1996) 87.
【21】 簡鈺庭, “脈衝調變式電感式電漿源之製作與特性量測”, 清華大學 工程與系統科學系 碩士論文 (2000).

【22】 Plasma Diagnostics ESPION Technical Information 531, Hiden Analytical Ltd. (http://www.hidenanalytical,com)
【23】 F. F. Chen, in R. H. Huddleston and S. L. L eonard (Eds.), Plasma Diagnostic Techniques, Academic Press, New York, 1965.
【24】 M. A. Lieberman and A. J. Lichtenberg, Principles os Plasma Discharges and Materials Processing, New York, J. Wiley & Sons, 1994, Chapter 6.
【25】 I. D. Sudit and R. C. Woods, “A study of the accuracy of various Langmuir probe theories”, J. Appl. Phys. 76 (1994) 4488.
【26】 E. Stoffels, W. W. Stoffels, and K. Tachibana, “Electron attachment mass spectrometry as a diagnostics for electronegative gases and plasmas”, Rev. Sci. Instrum. 69 (1998) 116.
【27】 K. L. Junck and W. D. Getty, “Comparison of argon electron-cyclotron-resonance plasmas in three magnetic field configurations. II. Energy distribution of argon ions”, J. Vac. Sci. Technol. A12 (1994) 760.
第四章
【1】 M. Horie, “Plasma-structure dependence of the growth mechanism of plasma-polymerized fluorocarbon films with residual radicals”, J. Vac. Sci. Technol. A13 (1995) 2490.
【2】 G. H. Yang, S. W. Oh, E. T. Kang, and K. G. Neoh, “Plasma polymerization and deposition of liner, cyclic and aromatic fluorocarbon on (100)-oriented single crystal silicon substrates”, J. Vac. Sci. Technol. A20 (2002) 1955.
【3】 Y. Zhang, E. T. Kang, K. G. Neoh, W. Huang, A. C. H. Huan, H. Zhang, and R. N. Lamb, “Surface modification of polyimide films via plasma polymerization and deposition of allylpentafluorobenzene”, Polymer 43 (2002) 7279.
【4】 P. Favia, G. Cicala, A. Milella, F. Palumbo, P. Rossini, and R. d’Agostino, “Deposition of super-hydrophobic fluorocarbon coating in modulated RF glow discharge”, Surf. Coat. Technol. 169-170 (2003) 609.
【5】 S. J. Limb, K. Gleason, D. J. Edell, and E. F. Gleason, “Flexible fluorocarbon wire coatings by pulsed plasma enhance chemical vapor deposition”, J. Vac. Sci. Technol. A15 (1997) 1814.

【6】 A. Goessl, D. M. Garrison, J. B. Lhoest, and A. S. Hoffman, “Plasma lithography thin film patterning of polymeric biomaterials by RF pplasma polymerization I: Surface preparation and analysis”, J. Biomater. Sci. Polymer Edn. 12 (2001) 721.
【7】 T. C. Wei, C. H. Liu, J. M. Shieh, S. C. Suen, and P. T. Dai, “Plasma treatment and dry etch characteristics of organic low-k dielectrics”, Jpn. J. Appl. Phys. 39 (2000) 7015.
【8】 K. Endo and T. Tatsumi, “Fluorinated amorphous carbon thin films grown by plasma enhanced chemical vapor deposition for low dielectric constant interlayer dielectrics”, J. Appl. Phys. 78 (1995) 1370.
【9】 L. G. Jacobsohn, D. F. Franceschini, M. E. H. Maia da Costa, and F. L. Freire Jr, “Structural and mechanical characterization of fluorinated amorphous-carbon films deposited by plasma decomposition of CF4-CH4 gas mixture”, J. Vac. Sci. Technol. A18 (2000) 2230.
【10】 M. Uhlig, A. Bertz, M. Rennau, S. E. Schulz, T. Werner, and T. Gessner, “Electrical and adhesion properties of plasma-polymerized ultra-low k dielectric films with high thermal stability”, Microelectron. Eng. 50 (2000) 7.
【11】 S. Agraharam, D. W. Hess, P. A. Kohl, and S. A. B. Allen, “Comparison of plasma chemistries and structure-property relationships of fluorocarbon films deposited from octafluorocyclobutane and pentafluoroethane monomers”, J. Vac. Sci. Technol. B19 (2001) 439.
【12】 I. P. Vinogradov, A. Dinkelmann, and A. Lunk, “Deposition of fluorocarbon polymer films in a dielectric barrier discharge (DBD)”, Surf. Coat. Technol. 174-175 (2003) 509.
【13】 S. Agarwala, O. King, S. Horst, R. Wilson, D. Stone, M. Dagenais, and Y. J. Chen, “Response surface study of inductively coupled plasma etching of GaAs/AlGaAs in BCl3/Cl2”, J. Vac. Sci. Technol. A17 (1999) 52.
【14】 R. Wächter and A. Cordery, “Response surface methodology modeling of diamond-like carbon film deposition”, Carbon 37 (1999) 1529.
【15】 T. A. Kircher, B. G. McMoride, and K. Richards, “Use of experimental designs to evaluate formation of aluminide and platinum aluminide coatings”, Surf. Coat. Technol. 108-109 (1998) 24.
【16】 T. Nakano and T. Ohta, “Relationship between chemical composition and film properties of organic spin-on glass”, J. Electrochem. Soc. 142 (1995) 918.
【17】 JMP® Statistics and Graphic guide, Ver. 3.2, SAS Institute, Inc. (1997).
【18】 S. Qazi, N. K. P. Samuel, T. K. Venkatachalam, and F. M. Uckun, Intern. “Evaluating dissolution profiles of an anti-HIV agent using ANOVA and non-linear regression models in JMP software”, J. Pharm. 252 (2003) 27.
【19】 A. Grill, Cold Plasma in Materials Fabrication, IEEE Press, New York, 1994, 155.
【20】 T. W. Mountsier and J. A. Samuels, “Precursor selection for plasma deposited fluorinated amorphous carbon films”, Thin Solid Film 332 (1998) 362.
【21】 A. Weber, R. Pöckelmann, and C. -P. Klages, “Electrical and optical properties of amorphous fluorocarbon films prepared by plasma polymerization of perfluoro-1,3-dimethylcyclohexane”, J. Vac. Sci. Technol. A16 (1998) 2120.
【22】 C. B. Labelle and K. K. Gleason, “Pulsed plasma-enhanced chemical vapor deposition from CH2F2, C2H2F4, and CHClF2”, J. Vac. Sci. Technol. A17 (1999) 445.
【23】 T. Kimura and K. Ohe, “Model and probe measurements of inductively coupled CF4 discharges”, J. Appl. Phys. 92 (2002) 1780.
【24】 D. Zhang and M. J. Kushner, “Surface kinetics and plasma equipment model for Si etching by fluorocarbon plasmas”, J. Appl. Phys. 87 (2000) 1060.
【25】 M. J. Sowa, M. E. Littau, V. Pohray, and J. L. Cecchi, “Fluorocarbon polymer deposition kinetics in a low-pressure, high-density, inductively coupled plasma reactor”, J. Vac. Sci. Technol. A18 (2000) 2122.
【26】 S. Agraharam, D. W. Hess, P. A. Kohl, and S. A. B. Allen, “Plasma chemistry in fluorocarbon film deposition from pentafluoroethane/argon mixtures”, J. Vac. Sci. Technol. A17 (1999) 3265.
【27】 C. I. Butoi, N. M. Mackie, L. J. Gamble, D. G. Castner, J. Barnd, A. M. Miller, and E. R. Fisher, “Deposition of highly ordered CF2-rich films using continuous wave and pulsed hexafluoropropylene oxide plasmas”, Chem. Mater. 12 (2000) 2014.
【28】 R. d’Agostino, F. Cramarossa, F. Fracassi, and F. Illuzzi, in: R. d’Agostino (Ed.), Plasma Deposition, Treatment, and Etching of Polymers, Academic Press, Boston, 1990, Chapter 2.
【29】 A. Doucoure, C. Guizard, J. Durand, R. Berjoan, and L. Cot, “Plasma polymerization of fluorinated monomers on mesoporous silica membranes and application to gas permeation”, J. Membr. Sci. 117 (1996) 143.
【30】 H. Yokomichi, T. Hayashi, and A. Masuda, “Changes in structure and nature of defects by annealing of fluorinated amorphous carbon thin films with low dielectric constant”, Appl. Phys. Lett. 72 (1998) 2704.
【31】 I. T. Martin, G. S. Malkov, C. I. Butoi, and E. R. Fisher, “Comparison of pulsed and downstream deposition of fluorocarbon material from C3F8 and c-C4F8 plasma”, J. Vac. Sci. Technol. A22 (2004) 227.
第五章
【1】 C. B. Labelle and K. K. Gleason, “Pulsed plasma-enhanced chemical vapor deposition from CH2F2, C2H2F4, and CHClF2”, J. Vac. Sci. Technol. A17 (1999) 445.
【2】 K. K. S. Lau and K. K. Gleason, “Solid-state nuclear magnetic resonance spectroscopy of low dielectric constant films from pulsed hydrofluoricarbon plasmas”, J. Electrochem. Soc. 146 (1999) 2652.
【3】 G. H. Yang, S. W. Oh, E. T. Kang, and K. G. Neoh, “Plasma polymerization and deposition of liner, cyclic and aromatic fluorocarbon on (100)-oriented single crystal silicon substrates”, J. Vac. Sci. Technol. A20 (2002) 1955.
【4】 T. W. Mountsier and J. A. Samuels, “Precursor selection for plasma deposited fluorinated amorphous carbon films”, Thin Solid Films 332 (1998) 362.
【5】 T. Nakano and S. Samukawa, “Effects of Ar dilution on the optical emission spectra of fluorocarbon ultrahigh-frequency plasma: C4F8 vs CF4”, J. Vac. Sci. Technol. A17 (1999) 686.
【6】 C. J. Choi, O. S. Kwon, Y. S. Seol, Y. W. Kim, and I. H. Choi, “Ar addition effect on mechanism of fluorocarbon ion formation in CF4/Ar inductively coupled plasma”, J. Vac. Sci. Technol. B18 (2000) 811.

【7】 J. S. Kim, M. V. V. S. Rao, M. A. Cappelli, S. P. Sharma, and M. Meyyappan, “Mass spectrometric and Langmuir probe measurements in inductively coupled plasmas in Ar, CHF3/Ar and CHF3/Ar/O2 mixtures”, Plasma Sources Sci. Technol. 10 (2001) 191.
【8】 E. C. Benck, A. Goyette, and Y. Wang, “Ion energy distribution and optical measurements in high-density, inductively coupled C4F6 discharges”, J. Appl. Phys. 94 (2003) 1382.
【9】 R. d’Agostino, F. Cramarossa, F. Fracassi, and F. Illuzzi, in: R. d’Agostino (Ed.), Plasma Deposition, Treatment, and Etching of Polymers, Academic Press, Boston, 1990, Chapter 2.
【10】 M. Shindo, S. Hiejima, Y. Ueda, S. Kawakami, N. Ishii, and Y. Kawai, “Parameters measurement of ECR C4F8/Ar plasma”, Thin Solid Films 345 (1999) 130.
【11】 A. N. Goyette, Y. Wang, M. Misakian, and J. K. Olthoff, “Ion fluxes and energies in inductively coupled radio-frequency discharges containing C2F6 and c-C4F8”, J. Vac. Sci. Technol. A18 (2000) 2785.
【12】 T. Kimura and K. Ohe, “Investigation of electronegativity in a radio-frequency Xe/SF6 inductively coupled plasma using a Langmuir probe”, Appl. Phys. Lett. 79 (2001) 2874.

【13】 G. A. Hebner and P. A. Miller, “Electron and negative ion densities in C2F6 and CHF3 containing inductively coupled discharges”, J. Appl. Phys. 87 (2002) 7660.
【14】 M. A. Lieberman and A. J. Lichtenberg, Principles os Plasma Discharges and Materials Processing, New York, J. Wiley & Sons, 1994, Chapter 6.
【15】 I. T. Martin, G. S. Marmen, C. I. Butoi, and E. R. Fisher, “Comparison of pulsed and downstream deposition of fluorocarbon material from C3F8 and c-C4F8 plasma”, J. Vac. Sci. Technol. A22 (2004) 227.
【16】 K. Okada, S. Komatsu, and S. Matsumoto, “Langmuir probe measurements in a low pressure inductively coupled plasma used for diamond deposition”, J. Vac. Sci. Technol. A17 (1999) 721.
【17】 S. F. Durrant, R. Landers, G. G. Kleiman, S. G. Castro, and M. A. B. de Moraes, “Fluorine-containing amorphous hydrogenated carbon films”, Thin Solid Films 281-282 (1996) 294.
【18】 M. V. V. S. Rao, S. P. Sharma, B. A. Cruden, and M. Meyyappan, “Langmuir probe and mass spectrometric measurements in inductively coupled CF4 plasmas”, Plasma Sources Sci. Technol. 11 (2002) 69.
【19】 M. Shindo, Y. Ueda, S. Kawakami, N. Ishii, and Y. Kawai, “Measurements of negative ion density in fluorocarbon ECR plasma”, Vacuum 59 (2000) 708.

【20】 A. Schwabedissen, E. C. Benck, and J. R. Roberts, “Comparison of electron density measurements in planar inductively coupled plasmas by means of the plasma oscillation method and Langmuir probes”, Plasma Sources Sci. Technol. 7 (1998) 119.
【21】 Y. Hikosaka, H. Hayashi, M. Sekine, H. Tsuboi, M. Endo, and N. Mizutani, “Realistic etch yield of fluorocarbon ions in SiO2 etch process”, Jpn. J. Appl. Phys. 38 (1999) 4465.
【22】 D. Zhang and M. J. Kushner, “Surface kinetics and plasma equipment model for Si etching by fluorocarbon plasmas”, J. Appl. Phys. 87 (2000) 1060.
【23】 E. Kawamura, V. Vahedi, M. A. Lieberman, and C. K. Birdsall, “Ion energy distributions in RF sheaths; review, analysis and simulation”, Plasma Sources Sci. Technol. 8 (1999) R45.
【24】 T. Panagopoulos and D. J. Economou, “Plasma sheath model and ion energy distribution for all radio frequencies”, J. Appl. Phys. 85 (1998) 3435.
【25】 E. A. Edelberg, A. Perry, N. Benjamin, and E. S. Aydil, “Energy distribution of ions bombarding biased electrodes in high density plasma reactors”, J. Vac. Sci. Technol. A17 (1999) 506.
【26】 S. K. Kim, S. I. Cho, Y. J. Choi, K. S. Cho, S. M. Pietruszko, and J. Jang, “Coplanar amorphous silicon thin film transistor fabricated by inductively-coupled plasma CVD”, Thin Solid Films 337 (1999) 200.
第六章
【1】 T. C. Wei, C. H. Liu, J. M. Shieh, S. C. Suen, and P. T. Dai, “Plasma treatment and dry etch characteristics of organic low-k dielectrics”, Jpn. J. Appl. Phys. 39 (2000) 7015.
【2】 M. H. Jo, H. H. Park, D. J. Kim, S. H. Hyun, S. Y. Choi, and J. T. Paik, “SiO2 aerogel film as a novel intermetal dielectric”, J. Appl. Phys. 82 (1997) 1299.
【3】 K. K. S. Lau, S. K. Murthy, H. G. P. Lewis, J. A. Caulfield, and K. K. Gleason, “Fluorocarbon dielectrics via hot filament chemical vapor deposition”, J. Fluorine Chem. 122 (2003) 93.
【4】 A. Grill, V. Patel, and C. Jahnes, “Novel low k dielectric based on diamondlike carbon material”, J. Electrochem. Soc. 145 (1998) 1649.
【5】 G. Tang, X. Ma, M. Sun, and X. Li, “Mechanical characterization of ultra-thin fluorocarbon films deposited by R.F. magnetron sputtering”, Carbon 43 (2005) 345.
【6】 K. S. Chen, M. R. Yang, and S. T. Hsu, “Fabrication and characterization of fluorine-containing films using plasma polymerization of octafluorotoluene”, Mater. Chem. Phys. 61 (1999) 214.
【7】 J. W. Yi, Y. H. Lee, and B. Farouk, “Low dielectric fluorinated amorphous carbon carbon thin films grown from C6F6 and Ar plasma”, Thin Solid Films 374 (2000) 103.
【8】 J. J. Sekevich and D. W. S. II, “Plasma enhanced chemical vapor deposition of fluorocarbon thin films via CF3H/H2 chemistries: power, pressure, and feed stock composition studies”, J. Vac. Sci. Technol. A18 (2000) 377.
【9】 G. H. Yang, S. W. Oh, E. T. Kang, and K. G. Neoh, “Plasma polymerization and deposition of liner, cyclic and aromatic fluorocarbon on (100)-oriented single crystal silicon substrates”, J. Vac. Sci. Technol. A20 (2002) 1955.
【10】 D. Koshel, H. Ji, B. Terreault, A. Côtė, G. G. Ross,G. Abel, and M. Bolduc, “Characterization of CFx films plasma chemically deposited from C3F8/C2H2 precursors”, Surf. Coat. Technol. 173 (2003) 161.
【11】 L. S. Hung, L. R. Zheng, and M. G. Mason, ”Anode modification in organic light-emitting diodes by low-frequency plasma polymerization on CHF3”, Appl. Phys. Lett. 78 (2001) 673.
【12】 J. X. Tang, Y. Q. Li, X. Dong, S. D. Wang, C. S. Lee, L. S. Hung, and S.T. Lee, “Photoemission and vibrational studies of metal/organic interfaces modified by plasma-polymerized fluorocarbon films”, Appl. Surf. Sci. 239 (2004) 117.
【13】 J. X. Tang, Y. Q. Li, J. Tashima, H. Sugsmura, Y. Inoue, and O. Takai, “Gas barrier performance of surface-modified silica films with grafted organosilane molecules”, Langmuir 19 (2003) 8331.

【14】 K. Endo and T. Tatsumi, “Fluorinated amorphous carbon thin films grown by plasma enhanced chemical vapor deposition for low dielectric constant interlayer dielectrics”, J. Appl. Phys. 78 (1995) 1370.
【15】 L. M. Han, R. B. Timmons, and W. W. Lee, “Pulsed plasma polymerization of an aromatic perfluorocarbon monomer: Formation of low dielectric constant, high thermal stability films”, J. Vac. Sci. Technol. B18 (2000) 799.
【16】 T. W. Mountsier and J. A. Samuels, “Precursor selection for plasma deposited fluorinated amorphous carbon films”, Thin Solid Films 332 (1998) 362.
【17】 A. Grill, Cold Plasma In Materials Fabrication, IEEE Press, 1994, Chapter 7.
【18】 C. Bilou, I. A. Bilou, Y. Sakai, Y. Suda, and A. Ohta, “Amorphous fluorocarbon polymer (a-C:F) films obtained by plasma enhanced chemical vapor deposition from perfluoro-octane (C8F18) vapor I: Deposition, morphology, structural and chemical properties”, J. Vac. Sci. Technol. A22 (2004) 13.
【19】 I. T. Martin, G. S. Malkov, C. I. A. Bitoi, and E. R. Fisher, “Comparison of pulsed and downstream deposition of fluorocarbon material from C3F8 and c-C4F8 plasma”, J. Vac. Sci. Technol. A22 (2004) 227.

【20】 C. B. Labelle, R. Opila, and A. Kornblit, “Plasma deposition of RF fluorocarbon thin films from c-C4F8 using pulsed and continuous excitation”, J. Vac. Sci. Technol. A23 (2005) 190.
【21】 K. Gotoh, Y. Nakata, M. Tagawa, and M. Tagawa, “Wettability of ultraviolet excimer-exposed PE, PI and PTFE films determined by the contact angle measurements”, Colloids and Surfaces A: Physicochem. Eng. Aspects 224 (2003) 165.
【22】 劉志宏, “低介電常數材料製備與蝕刻製程之研究”, 中原大學 化學工程學系 碩士論文 (2000).
【23】 S. Takeishi, H. Kudo, R. Shinohara, M. Hoshioo, S. Fukuyama, J. Yamaguchi, and M. Yamada, “Plasma-enhanced chemical vapor deposition of fluorocarbon films with high thermal resistance and low dielectric constants”, J. Electrochem. Soc. 144 (1997) 1797.
【24】 H. K. Yasuda, Plasma Polymerization, New York, U.S.A. (1985).
第七章
【1】 M. Horie, “Plasma-structure dependence of the growth mechanism of plasma-polymerized fluorocarbon films with residual radicals”, J. Vac. Sci. Technol. A13 (1995) 2490.
【2】 T. C. Wei and C. H. Liu, “Evaluation of process variables in plasma deposition of low-k dielectrics using the experimental design methodology”, Surf. Coat. Technol. (2005) in press.
【3】 L. M. Han, R. B. Timmons, and W. W. Lee, “Pulsed plasma polymerization of an aromatic perfluorocarbon monomer: Formation of low dielectric constant, high thermal stability films”, J. Vac. Sci. Technol. B18 (2000) 799.
【4】 J. W. Yi, Y. H. Lee, and B. Farouk, “Low dielectric fluorinated amorphous carbon carbon thin films grown from C6F6 and Ar plasma”, Thin Solid Films 374 (2000) 103.
【5】 S. Oh, Y. Zeng, J. K. Koo, and W. P. Zurawsky, “Permeation of simple gases through plasma polymerized films from fluorine-containing monomers”, J. Appl. Polym. Sci. 57 (1995) 1277.
【6】 Y. Inoue Y. Yoshimura, Y. Ikeda, and A. Kohno, “Ultra-hydrophobic fluorine polymer by Ar-ion bombardment”, Colloids. and Surfaces B: Biointerfaces 19 (2000) 257.

【7】 Y. Zhang, E. T. Kang, K. G. Neoh, W. Huang, A. C. H. Huan, H. Zhang, and R. N. Lamb, “Surface modification of polyimide films via plasma polymerization and deposition of allylpentafluorobenzene”, Polymer 43 (2002) 7279.
【8】 P. Favia, G. Cicala, A. Milella, F. Palumbo, P. Rossini, and R d’Agostino, “Deposition of super-hydrophobic fluorocarbon coating in modulated RF glow discharge”, Surf. Coat. Technol. 169-170 (2003) 609.
【9】 L. S. Hung, L. R. Zheng, and M. G. Mason, ”Anode modification in organic light-emitting diodes by low-frequency plasma polymerization on CHF3”, Appl. Phys. Lett. 78 (2001) 673.
【10】 S. J. Limb, K. Gleason, D. J. Edell, and E. F. Gleason, “Flexible fluorocarbon wire coatings by pulsed plasma enhance chemical vapor deposition”, J. Vac. Sci. Technol., A15 (1997) 1814.
【11】 A. M. Hynes, M. J. Shenton, and J. P. S. Badyal, “Pulsed plasma polymerization of perfluorocyclohexane”, Macromolecules 29 (1996) 4220.
【12】 T. W. Mountsier and J. A. Samuels, “Precursor selection for plasma deposited fluorinated amorphous carbon films”, Thin Solid Films 332 (1998) 362.

【13】 C. I. Butoi, N. M. Mackie, J. L. Barnd, E. R. Fisher, L. J. Gamble, and D. G. Castner, “Control of surface film composition and orientation with downstream PECVD of hexafluoropropylene oxide”, Chem. Mater. 11 (1999) 862.
【14】 C. I. Butoi, N. M. Mackie, L. J. Gamble, D. G. Castner, J. L. Barnd, A. M. Miller, and E. R. Fisher, “Deposition of highly ordered CF2-rich films using continuous wave and pulsed hexafluoropropylene oxide plasmas”, Chem. Mater. 12 (2000) 2014.
【15】 C. Seoul and W. J. Song, “Polymer light-emitting devices with poly (2-decyloxy-1, 4-phenylene)”, Opt. Eng. 39 (2000) 652.
【16】 C. Seoul and W. J. Song, “Polymer light-emitting devices based on plasma-polymerized benzene and plasma-polymerized naphthalene”, Journal of Materials Science: Materials in Electronics 12 (2001) 51.
【17】 D. Jung, H. Pang, J. H. Park, and Y. Son, “Photoluminescence and electroluminescence from polymer-like organic thin films deposited by plasma-enhanced chemical vapor deposition using para-xylene as precursor”, Jpn. J. Appl. Phys. 38 (1999) L84.
【18】 C. Bilou, I. A. Bilou, Y. Sakai, Y. Suda, and A. Ohta, “Amorphous fluorocarbon polymer (a-C:F) films obtained by plasma enhanced chemical vapor deposition from perfluoro-octane (C8F18) vapor I: Deposition, morphology, structural and chemical properties”, J. Vac. Sci. Technol. A22 (2004) 13.
【19】 J. Carpentier and G. Grundmeier, “Chemical structure and morphology of thin bilayer and composite organosilicon and fluorocarbon microwave plasma polymer films”, Surf. Coat. Technol. 192 (2005) 189.
【20】 S. Samukawa and T. Mukai, “Effects of low-molecular-weight radical for reduction of microloading in high-aspect contact-hole etching”, Thin Solid Films 374 (2000) 235.
【21】 鄭總輝、陳振鑾、陳致源、鄭欽峰, “疏水自潔塗層結構概論”, 工業材料雜誌 218 (2005) 80. (http://www.materialsnet.com.tw)
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top