跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 10:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭志豪
研究生(外文):Chih-Hao Cheng
論文名稱:利用電場抑制掃流微過濾之膜結垢
論文名稱(外文):Application of electric field to reduce the fouling in crossflow microfiltration
指導教授:莊清榮莊清榮引用關係
指導教授(外文):Ching-Jung Chuang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:141
中文關鍵詞:電場掃流過濾
外文關鍵詞:electrofiltration
相關次數:
  • 被引用被引用:1
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

於掃流過濾程序中外加一電場,來提升分離效能,係藉粒子電泳作用及伴隨之濾餅及濾材的電滲透效應,以達提昇濾速及濾液品質之效果。若選用具高電性之膜材進行電場掃流過濾,其絕大部分之濾速提升,係由電滲透所貢獻,本研究為了深入了解電滲透作用,首先進行電滲透穩態流之微觀分析,模擬管壁電性,複合管之管徑比及電場施加方向等對電滲透流態之影響;另一方面亦進行附加電場掃流過濾,利用0.1及0.2μm孔徑之Nylon薄膜,以自行配置之SiO2懸浮液,進行電場薄膜微過濾實驗,探討電場施加方式(連續式及反向脈衝式)、過濾壓差及掃流速度對過濾效能的影響。
於模擬電滲透中,吾人所採用之方法,係以流體運動方程中另加一電場作用力進行模擬小孔徑(0.2μm)單一圓管中之流態,其結果顯示,模擬之全展流截面的平均速度與理論電滲透平均流速值,其相對誤差約為6~10%:再以較大孔徑(0.8μm)模擬與以滑動邊界條件解析電滲透流之方法進行比較,兩者之模擬結果甚相近。而於兩層複合管之模擬中,發現管徑比及壁上界達電位比對大管與小管連接處之流態影響甚鉅,當機械壓力梯度與電場力作用同向時,其穩定之出口流量皆大於未施加電場者,而電場作用與機械壓差相反時,管壁轉角區出現循環流之情形較為明顯,若將電場作用及機械壓差同時存在之出口流量扣除僅機械壓差之滲透流,其結果顯示,電場與壓力梯度同向之滲透流量皆大於電場與壓力梯度異向者。
於電場掃流過濾實驗中,掃流速度對濾速影響甚微,本實驗所配置之SiO2懸浮液,於壓差0.1bar,掃流速度0.403 m/s操作下,在電場強度14000V/m時,該電滲透佔擬穩態濾速的82%。反向脈衝電場係利用類似電滲透逆洗之概念,於過濾過程中抑制膜面上之濾餅量,其結果顯示,當反向電場開啟時,其濾速為零,但掃流剪應作用力仍無法完全刮除以附著的粒子且部分粒子已滲入膜孔中,故無法使濾速回復到100%,以0.2μm孔徑之Nylon薄膜在過濾壓差0.2bar、掃流速度0.806m/s下,可獲得之濾液收集量約為未施加電場者的1.66倍,且其平均濾速回復率隨掃流速度增加而提高。在0.2μm孔徑之Nylon薄膜在過濾壓差0.1bar、掃流速度0.403m/s下,以三種不同電場(連續、正向脈衝及反向脈衝)施加模式下,於30分鐘後所收集到之濾液量為2263.2、450.26及184.89 ,其平均濾速之關係為JE(continuous) > JE(Pulse) > JE(Reverse pulse)。
ABSTRACT

Among the various techniques developed to reduce the external and/or internal fouling of membranes, the so-called crossflow electrofiltration using a combination of shearing action and electric field to reduce both concentration polarization and membrane deposition has been attracting an increasing amount of attention. In such operations, electroosmosis induced through the membrane may play a vital role in enhancing the filtration rate, but so far, there is inadequate knowledge in the electroosmotic phenomena within the fine pore membranes. The first objective of this study was to simulate the microflow in the fine channels imposed with electric fields. The effects of wall zeta potential, pore dimension ratios for two layers composite membrane and the direction of electric field etc. on the electroosmotic flow were investigated numerically. The secondary part of this study was to investigate experimentally the characteristics of electro-microfiltration of CMP graded SiO2 suspensions. The effects of electric field mode(continuous, pulse and reverse pulse field ) and other operation parameters such as crossflow velocity and transmembrane pressure etc. on the filtration performance were analyzed. Emphasis was placed on the potential of applying reverse pulse electric field to clean the membrane during crossflow filtration of CMP suspensions.
The simulation was implemented using Fluent software in which an electric force distribution function as a source term was added into the Navier-Stokes Equation. As compare the simulated results with that evaluated from electrokinetic model for single capillary and fully developed flow, both has a 6~10 % relative difference in average velocity. In this study, the simulation with slip boundary condition was also carried out and showed a result very close to that obtained with no-slip boundary condition only for large pores where the electric double layer effect is negligible. With respect to the simulated results for two layers composite channels, it was found that circulation flow is obvious in the enlargement region between the two layers if both wall zeta potentials have opposite polarities. The electroosmotic flow rate induced in the composite channels imposed with forward electric field (fluid forced to flow from small channel to the large channel) is higher than that with reverse electric field.
Experiments of electro-filtration showed that the crossflow velocity has a little influence on the filtration rate. It was found that about 82% of the pseudo-steady state filtration is contributed by the electroosmotic flux at E=14000 V/m under the given conditions in the study. Although the instantaneous filtrate flux can approach zero or even negative value when a reverse pulse electric field was applied, the shearing action used still can not sweep off all the deposit due to some particles have been penetrated into the membrane pore. The capability of using reverse pulse electric field to clean membrane depends on the crossflow velocity. Based on the permeate amount received in a 30 min filter run, the relative ratios in average filtration flux between that from continuous electric field, pulse field and reverse pulse field are 12.2 : 2.4 : 1.0.
目 錄

中文摘要 …………………………………………………Ⅰ
英文摘要 …………………………………………………Ⅲ
誌謝 ……………………………………………… Ⅴ
目錄 …………………………………………………Ⅵ
圖索引 ………………………………………………VIII
表索引 …………………………………………… ⅩI

第一章 緒論 ……………………………………… 1

第二章 文獻回顧 ………………………………………4
2-1 掃流過濾…………………………………………5
2-1-1 掃流過濾之過濾機制…………………… 6
2-1-2 影響掃流過濾之因素…………………… 8
2-2 電場掃流過濾……………………………… 11
2-2-1 連續電場掃流過濾……………………… 13
2-2-2 脈衝電場掃流過濾……………………… 17
2-2-3 電滲透效應……………………………… 19
2-2-4 電滲透流態……………………………… 20
2-3 CMP廢液………………………………… 21
2-3-1 廢液特性………………………………… 22
2-3-2 廢液產源………………………………… 22
2-3-3 處理技術…………………………………… 25

第三章 理論背景……………………………………27
3-1 電雙層……………………………………………27
3-2 電動效應…………………………………………29
3-2-1 電泳……………………………………………29
3-2-2 電滲透…………………………………………30
3-3 濾面粒子受力分析………………………………33
3-4 電滲透理論分析…………………………………36
3-3-1 理論分析………………………………………36
3-3-2 數值方法………………………………………38
3-3-3 流體計算網格之產生…………………………39
3-3-4 邊界條件之設定………………………………39

第四章 實驗材料設備及步驟……………………… 43
4-1 實驗材料………………………………………43
4-2 實驗裝置………………………………………44
4-3 實驗儀器及設備………………………………48
4-4 實驗步驟………………………………………49

第五章 結果與討論……………………………………51
5-1 電滲透分析………………………………… 51
5-1-1 單一圓管電滲透…………………………57
5-1-2 兩層複合圓管電滲透………………………70
5-1-2-1 電場施加方向與機械壓差相同…………72
5-1-2-1 電場施加方向與機械壓差相異…………76
5-2 電場施加方式對過濾行為之影響………………81
5-2-1 連續電場對過濾之影響……………………81
5-2-1.1 過濾壓差的影響…………………………83
5-2-1.2 掃流速度的影響…………………………86
5-2-2 脈衝電場對過濾之影響………………………86
5-2-2-1 反向脈衝電場操作………………………89
5-2-2-1.1 壓力的影響……………………………92
5-2-2-1.2 掃流速度的影響………………………92
5-2-2-2 正向脈衝電場操作………………………96
5-2-3 電場施加形式對薄膜結垢之影響…………96
5-3 薄膜孔徑大小之影響………………………108

第六章 結論…………………………………………112
參考文獻 ………………………………………………115
符號說明 ………………………………………………121
附 錄 ………………………………………………124
自 述 ………………………………………………130

表索引
表目錄 頁次
Table 2-1 Materials in CMP Wastewater……………………………………….. 4
Table 2-2 CMP wastewater properties………………………………………….. 23
Table 2-3 Methods for reduction of flux degradation………………………….. 24
Table 4-1 SiO2 研磨液基本性質……………………………………………….. 43
Table 4-2 為實驗所配置之懸浮液的pH、電導度及濁度值(NTU)等……….. 43
Table 5-1 Average velocity and mass flow rate under different electric field
strength………………………………………………………………. 66
Table 5-2 Average velocity and mass flow rate simulated with different
methods……………………………………………………………… 69
Table 5-3 Mass flow rate under variable zeta potentials at E2= 2000 V/m 75
Table 5-4 Mass flow rate under variables zeta potentials at E2= - 2000V/m 79
Table 5-5 Mass flux induced by electroosmosis with variable zeta potential 80
Table 5-6 Average flux and flux recovery under different crossflow velocity
operations ( 0.1、0.2 μm Nylon membrane )………………………. 95
Table 5-7 Effect of electric filed strength on the Rm before and after 30 min)
filtration under different pressure drops ( 0.1μm Nylon membrane、
u=0.403 m/s………………………………………………………….. 98
Table 5-8 Effect of electric filed strength on the Rm before and after 30 min
filtration under variable crossflow velocities ( 0.1μm Nylon
membrane )………………………………………………………….. 101
Table 5-9 Effect of electric filed strength on the Rm before and after 30 min
filtration under different pressure drop ( 0.2μm Nylon membrane、
u=0.403m/s ) 103
Table5-10 Effect of electric filed strength on the Rm before and after 30 min
filtration under variable crossflow velocity ( 0.1μm Nylon
membrane )………………………………………………………….. 105
Table5-11 Effect of electric field strength on the Rm before and after filtration
under different electric field models ( 0.1、0.2μm Nylon membrane ) 107
Table5-12 Filtrate volume after 30 min under variable pore sizes ……………... 110
Table5-13 Filtrate NTU SiO2/Water suspension under different electric field
Models………………………………………………………………. 110

圖索引
圖目錄 頁次
Fig. 2-1 Fouling Schematics: (Case A) pore narrowing and constriction.
(Case B) pore plugging, and (Case C) solute deposition and cake
layer formation..................................................................................... 7
Fig. 2-2 The phenomena in crossflow electrofiltration...................................... 12
Fig. 3-1 Schematic diagram of potential distribution in a capillary in
cylindrical coordinates(r,θ,z)............................................................ 31
Fig. 3-2 Variation of the constant f (in eq.(3-8)) with κa for various zeta
potentials ( Hiemenz , 1986) ........................................... 32
Fig. 3-3 Forces exerted on the depositing particle................................................ 35
Fig.3-4 Micropourous membrane Structures....................................................... 40
Fig.3-5 The SIMPLE algorthim........................................................................... 41
Fig. 3-6 Two types of membrane pore models ( a ) tube ( a1 ) mesh
(b) composite tube (b1) mesh of axial symmetry.................................... 42
Fig. 4-1 Schematic diagram of electrocrossflow experiment…………………... 46
Fig. 4-2 Details of the electrocrossflow filter chamber………………………… 47
Fig. 5-1 Permeate flux with time of clean 0.2 μm PC membrane
(ΔP = 0.036 bar ) under pulse electric field…………………………… 52
Fig. 5-2 Variation of permeate flux under Pulse electric field (on(30)/off(30))
for clean PC membrane ( 0.2 μm、ΔP = 0.036 bar )………………….. 54
Fig. 5-3 Comparison of the measured electroosmotic flux ( qs )
with the estistamted values ( qme ) for PC membrane…………………. 55
Fig. 5-4 Variation of permeate flux under alternating electric field mode
for clean 0.1 μm Nylon66 membrane(E=2000V/m、ΔP = 0.036bar ) 56
Fig. 5-5 Velocity vector colored for axial velocity profile at entrance region
under electric field strength (a) E = 0 V/m (b) E = 2000 V/m
(c) E = - 2000 V/m ( ΔP=0.036bar )…………………………………. 59
Fig. 5-6 Axial development of dimensionless velocities (at r/R=0.2 )under
different electric field strength(E = 0、2000 及– 2000 V/m )………… 60
Fig. 5-7 Effect of electric field strength on the fully developed velocity
profile ( z = 1.025 x 10 -5 m 、 E = - 2000、0、2000 V/m )………. 61
Fig.5-8 Flow pattern under E = - 10000 V/m ( a ) Velocity vector colored
for axial velocity profile at entrance region ( b ) fully developed
velocity profile…………………………………………………………. 63
Fig. 5-9 Velocity vector colored by axial velocity profile at entrance region under high electric field strength (a ) E = 2000000V/m (b) E = -2000000 V/m(ΔP=0.036bar )……………………………….. 64
Fig.5-10 (a) Fully developed velocity profile under high electric field strength
(2000000、2000000 V/m、△p = 0.036 bar)( b ) velocity induced by
electroosmossis……………………………………………………….. 65
Fig. 5-11 Fully developed velocity profile ( a ) E=20000V/m (method A and B)
( b ) velocity induced by electroosmosis (method A and B) 68
Fig.5-12 Streamline colored at connect region ( E = 0 V/m ) ( a ) R2 = 0.5 μm
( b ) R2 = 1 μm……………………………………………………….. 71
Fig.5-13 Streamline colored at connect region for R1/R2 = 0.1 under different)
zeta potential ratio ( a ) (ζ1,ζ2) = (-10,-10) ( b ) (ζ1,ζ2) = (-20,-20)
( c ) (ζ1,ζ2) = (-30,-10) ( d ) (ζ1,ζ2) = (-10,-30) ( e ) (ζ1,ζ2) = (-10,10)
( f ) (ζ1,ζ2) = (-20,20) ( g ) (ζ1,ζ2) = (-30,10) ( h ) (ζ1,ζ2) = (-10,30) 73
Fig.5-14 Streamline colored at connect region for R1/R2 = 0.2 under different)
zeta potential ratio ( a ) (ζ1,ζ2) = (-10,-10) ( b ) (ζ1,ζ2) = (-20,-20)
( c ) (ζ1,ζ2) = (-30,-10) ( d ) (ζ1,ζ2) = (-10,-30) ( e ) (ζ1,ζ2) = (-10,10)
( f ) (ζ1,ζ2) = (-20,20) ( g ) (ζ1,ζ2) = (-30,10) ( h ) (ζ1,ζ2) = (-10,30) 74
Fig.5-15 Streamline colored at connect region for R1/R2 = 0.1 under different)
zeta potential ratio ( a ) (ζ1,ζ2) = (-10,-10) ( b ) (ζ1,ζ2) = (-20,-20)
( c ) (ζ1,ζ2) = (-30,-10) ( d ) (ζ1,ζ2) = (-10,-30) ( e ) (ζ1,ζ2) = (-10,10)
( f ) (ζ1,ζ2) = (-20,20) ( g ) (ζ1,ζ2) = (-30,10) ( h ) (ζ1,ζ2) = (-10,30) 77
Fig.5-16 Streamline colored at connect region for R1/R2 = 0.2 under different)
zeta potential ratio ( a ) (ζ1,ζ2) = (-10,-10) ( b ) (ζ1,ζ2) = (-20,-20)
( c ) (ζ1,ζ2) = (-30,-10) ( d ) (ζ1,ζ2) = (-10,-30) ( e ) (ζ1,ζ2) = (-10,10)
( f ) (ζ1,ζ2) = (-20,20) ( g ) (ζ1,ζ2) = (-30,10) ( h ) (ζ1,ζ2) = (-10,30) 78
Fig.5-17 Filtration rate with time of SiO2 suspension under continuous electric
field……………………………………………………………………. 82
Fig.5-18 Variation of filtration rate with the interruption of electric field after
30 min of operation ( 0.2 μm Nylon membrane )……………………... 84
Fig.5-19 Effect of pressure drop on filtration rate under various electric field
strengths ( 0.1 μm Nylon membrane)…………………………………. 85
Fig.5-20 Effect of pressure drop on filtration rate under various electric field
strengths ( 0.2 μm Nylon membrane)…………………………………. 85
Fig.5-21 Effect of crossflow velocity on filtration rate under various electric
field strengths (a) 0.1μm (b) 0.2μm (Nylon membrane)………………. 87
Fig.5-22 Effect of crossflow velocity on filtration rate under various electric
field strengths (a) 0.1μm (b) 0.2μm (Nylon membrane)……………… 88
Fig.5-23 Filtration rate with time of SiO2 suspension under three different pulse electric field models (E= 14000V/m)…………………………… 90
Fig.5-24 Filtration rate with time under two different electric field modes
(E = 14000V/m、0.2μm、u =0.806 m/s )…………………………….. 91
Fig.5-25 Flux recovery and pseudo steady state flux under variable pressure
drop ( a ) 0.1 μm ( b ) 0.2 μm………………………………… 93
Fig.5-26 Membrane surface after filtration ( a ) E = 0 V/m ( b) Reverse pulse
E = 14000 V/m ( Δp=0.2bar、0.1μm Nylon 、u = 0.806 m/s )……… 94
Fig.5-27 Filtration rate with time under two different electric field modes
(a) 0.1μm (b) 0.2μm (E = 14000V/m、Nylon membrane、
△P = 0.1 bar、u =0.406 m/s ) 97
Fig.5-28 Washed membrane after filtration (u=0.403 m/s、0.1μm Nylon)
E= 0 V/m、△P = 0.05 bar (b) reverse pulse E= 14000 V/m、
△P = 0.05 bar(c)E=14000 V/m、△P = 0.1 bar (d) reverse pulse r
E=14000 V/m、△P = 0.1 bar (e) E= 0 V/m、△P = 0.2 bar
(f) E=14000 V/m、△P = 0.2 bar……………………………………… 99
Fig.5-29 Washed membrane after filtration (0.1μm Nylon)(a) E= 14000 V/m、
△P = 0.05 bar、u = 0.134 m/s (b) reverse pulse E= 14000 V/m、
△P = 0.05 bar、u = 0.134 m/s (c) E=14000 V/m、△P = 0.2 bar、
u = 0.403 m/s (d) reverse pulse E= 14000 V/m、△P = 0.2 bar、
u = 0.403 m/s (e) E= 14000 V/m、△P = 0.2 bar、u = 0.806 m/s
(f) reverse pulse E= 14000 V/m、△P = 0.2 bar、u = 0.806 m/s 102
Fig.5-30 Washed membrane after filtration (u = 0.403 m/s、 0.2μm Nylon)
(a) E= 0 V/m、△P = 0.05 bar (b) E= 14000 V/m、△P = 0.05 bar
(c) reverse pulse E=14000 V/m、△P = 0.05 bar (d) E= 0 V/m、
△P = 0.2 bar (e) E=14000V/m、△P = 0.2 bar (f) reverse pulse
E= 14000 V/m、△P = 0.2 bar………………………………………… 104
Fig.5-31 Washed membrane after filtration (0.2μm Nylon)(a) E= 14000 V/m、
△P = 0.05 bar、u = 0.134 m/s (b) reverse pulse E= 14000 V/m、
△P = 0.05 bar、u = 0.134 m/s (c) E=14000 V/m、△P = 0.2 bar、
u = 0.403 m/s (d) reverse pulse E= 14000 V/m、△P = 0.2 bar、
u = 0.806 m/s (e) E= 14000 V/m、△P = 0.2 bar、u = 0.806 m/s
(f) reverse pulse E= 14000 V/m、△P = 0.2 bar、u = 0.806 m/s……… 106
Fig.5-32 Washed membrane after filtration at Reverse pulse E = 14000 V/m
( a ) 0.1 μm , E (↑) ( b) 0.1 μm E (↓) ( c ) 0.2 μm , E (↑)
( d) 0.2 μm E (↓) (△P = 0.1 bar、u =0.406 m/s) 109
參 考 文 獻

Assis Odilio B.G. andEliandro R. Silva, The Use of Eletrochemical Techniques for Ceramic Filtration Medium, Materials Science Forum, vol 498-499 , p.464~469,2005

Akay, G., R. J. Wakeman, Electric Field Enhanced Crossflow Microfiltration of Hydrophobically Modified Water Soluble Polymers, J. Membr. Sci., vol. 131, p.229-236, 1997

Altmann, J., S. Ripperger, Particle Deposition and Layer Formation at the Crossflow Microfiltration , J. Membr. Sci., vol. 124, p.119~128 , 1997

Belfort G., Joseph M. Pimbley, Anthony Greiner and Kun Yong Chung, Diagnosis of Membrane Fouling Using a Rotating Annular Fiter. 1. Cell Culture Media, J. Membr. Sci., vol.77, p.1~22, 1993

Belfort G., R. H. Davis, A. L. Zydney, The Behavior of Suspensions and Macromolecular Solutions in Crossflow Microfiltration, J. Membr. Sci., vol.96, p.1~58, 1994

Bowen W. R. and Sabuni H. A., Electrical Enhanced Membrane Filtration at Low Cross-Flow Velocities, Ind. Eng. Chem. Res.,vol.30, p1573~1579, 1991

Bowen W. Richard and Hoze A. M. Sabuni, Electroosmotic Membrane Backwashing, Ind. Eng. Chem. Res.,vol.33,p1245~1249, 1994

Bowen W. R., A. L. Ahmad, N. Ibrahim, Automated Electrophoretic Membrane Cleaning for Dead-end Microfiltration and Ultrafiltration, Separation and purification Technology, vol. 29, p.105~112 ,2002

Chuang, C. J., C. W. Fang and K. L. Tung, Electro-Microfiltration of Colloidal Suspensions, Sep. Sci. Tech., vol. 38, p.797~816 ,2003

Den Walter, Chihpin Huang, Electrocoagulation for Removel of Silica Nano-particle from Chemical-mechanical-planarization Wastewater, Colloids and Surfaces A: Physicochem. Eng. Aspects, vol.254 , p.81~89 , 2005

Durst F., S. Ray , B. Ǜnsal , O. A. Bayoumi, The Development Lengths of Laminar Pipe and Channel Flow, J. fluids eng., vol.127, p. 1154~1160, 2005

Faibish, R. S., E. Menachem, C. Yoram, Effect of Interparticle Electrostatic Double Layer Interactions on Permeate Flux Decline in Crossflow Membrane Filtration of Colloidal Suspensions: An Experimental Investigation , J. Colloid Interface Sci., vol.204, p.77~86, 1998.

Fischer E. and Raasch J., Cross-Flow Filtration, Ger. Chem. Eng.,vol.8, p221~216, 1985

Golden Josh H., Robet Small, Louis Pagan, Cass Shang, Srini Ragavan, Evaluating and Treating CMP Wastewater, Semicond. Int., vol. 23, p.85~98, 2000

Henry, J. D., L. F. Lawer, C. H. A. Kuo, A Solid/Liquid Separation Process Based on Crossflow and Electrofiltration , AIChE J., vol.23, p.851-859, 1977

Hofmann Ralph, Clemens Posten, Improvement of Dead-end Filtration of Biopolymers with Pressure Electrofiltration ,Chem. Eng. Sci.,vol.58, p.3847~3858, 2003

Huisman, I. H., E. Vellenga, G. Tr�讚�熳dh, C. Tr�讚�熳dh, The Influence of the Membrane Zeta Potential on the Critical Flux for Crossflow Microfiltration of Particle Suspensions,” J. Membr. Sci., Vol. 156, p.153-158, 1999

Huisman I. H. , H. M. Huotari, G. T., Crosflow Membrane Filtration Enhanced by an External DC Electric Field:A Review , IChem.,vol.77,p.461~468, 1999

Huotari, H. M., G. Tr�讚�熳dh, I. H. Huisman, Crossflow Membrane Filtration Enhanced by an External DC Electric Field: A Review, Instn. Chem. Enger. Trans. IChemE., vol. 77, part A, p.461-468 , 1999

Lin, Sheng H., Chung R.Yang, Chemical and Physical Treatments of Chemical Mechanical Polishing Wastewater from Semiconductor Fabrication, J. Hazard. Mater. , vol.108, p.103~109, 2004

Kang, S. K., Choo, K. H., Use of MF and UF Membranes for Reclamation of Glass Industry Wastewater Containing Colloidal Clay and Glass Particles , J. Membr. Sci., vol. 223, p.89-103, 2003

Kondoh, S.; Hiraoka, M. ,Commercialization of pressurized electroosmotic dehydrator (PED), Water Science and Technology ,vol.22, p.259-68., 1990

Lazarova, Z., W. Serro, Electromembrane Separation of Mineral Suspensions:Influence of Process Parameters, Sep. Sci. Tech., vol. 37 , p.515–534, 2002

Lee, C. H., D. Gidaspow, Wasan, D. T., Cross-flow Electrofilter for Nonaqueous Slurries, Ind. Eng. Chem. Fundam., vol. 19, p.166-175, 1980

Lu W. M. and Ju S. C., Selective Particle Deposition in Cross-Flow Filtration , Sep. Sci. Tech., vol.24, p517~540, 1989

Mikul��šek, P., J. Cakl, P. Posp��šil, P. Doleček, The Use of Flux Enhanchcement Methods for High Flux Crossflow Membrane Microfltration System, Chem. Biochem. Eng. Q. , vol. 14 p.117~123, 2000

Mercier-Bonin, M., C. Lagane, C. Fonade, “Influence of A Gas/Liquid Two-Phase Flow on the Ultrafiltration and Microfiltration Performances: Case of A Ceramic Flat Sheet Membrane,” J. Membr. Sci., vol. 180, p.93~102, 2000

Okada, K., Y. Nagase, Correlations of Filtration Flux Enhanced by Electric Fields in Crossflow Microfiltration, J. Chem. Eng. Japan, vol. 30, p.1054-1058, 1997

Posp��šil P., R. J. Wakeman, I. O.A. Hodgson, P. Mikul��šek, Shear Stress-based Modeling of Steady State Permeate Flux in Microfiltration Echanced by Two-phase Flows, Chemical Engineering Journal, vol.97, p.257~263, 2004

ŠM�胖OV�� D., P. Mikul��šek, R. J. Wakeman, P. Velikovsk��, Influence of Ionic Strength and pH of Dispersed Systems on Microfiltration, Desalination, vol.163, p.323~332 , 2004

Vigneswaran, S.; Kiat, Wong Yen., Detailed Investigation of Effects of Operating Parameters of Ultrafiltration Using Laboratory-scale Ultrafiltration Unit , Desalination ,vol.70(1-3), p.299~316, 1988

Visvanathan, C.; Ben Aim, R., Studies on colloidal membrane fouling mechanisms in crossflow microfiltration , J. Membr. Sci., vol.45, p.3~15, 1989
Visvanathan C., R. Ben Aim, Enhancing Electrofiltration with the aid of an Electro-osmotic Backwashing Arrangement, Filreation and Separation, p.42~44, 1990

Wakeman, R. J., Electrofiltration Microfiltration Plus Electrophoresis,” The Chemical Engineer, June, p.65-70, 1986

Wakeman, R.J.and E. S. Tarleton, Membrane Fouling Prevention in Crossflow Microfiltration by the Use of Electric Fields, Chem. Eng. Sci., vol.42, p829~842, 1986

Wakeman R. J., C.J. Williams, Additional Techniques to Improve Microfiltration, Separation and purification Technology, vol. 26, p.3~18, 2002

Wakeman, R. J.and M. N. Sabri, Utilizing Pulsed Electric Fields in Crossflow Microfiltration of Titania Suspensions, Trans IChemE, vol.73, p455~463, 1995

Wakeman R. J., D.ŠM�胖OV��, P. Mikul��šek, , P. Velikovsk��, Charge Effects of Dispersed Systems And Membrane Surface On Cross-flow Microfiltration, Filtration, vol.4, p.204-209, 2004

Weigert T., J. Altmann and S. Ripperger, Crossflow Electrofiltration in Pilot Scale, J. Membr. Sci., vol.159, p253~262, 1999

Xu, N., Y. Zhao, J. Zhong, J. Shi, Crossflow Microfiltration of Micro-Sized Mineral Suspensions Using Ceramic Membranes, Institution of Chemical Engineers, Trans IChemE., Vol. 80, part A, p.215~221, 2002

Yang Gordon C. C. , Tsung-Yin Yang, Shiou-Huei Tsai, Cross-flow Electro-microfiltration of Oxide-CMP Wastewater , Water Res. ,vol. 37, p.785~792 , 2003

Zhao, Y. ,Zhong Jing, J. Hong Li, Nanping Xu, Jun Shi, Fouling and Regeneration of Ceramic Microfiltration Membranes in Processing Acid Wastewater Containing Fine TiO2 Particles , J. Membr. Sci., vol. 208, p.331~341, 2002

Zhao, Y. ,Weihong Xing, Nanping Xu, Jun Shi, Hydraulic Resistance in Microfiltration of Titanium White Waste Acid Through Ceramic Membranes , Separation and Purification Technology. vol. 32, p.99~104, 2003

Zumbusch P. V., R. P�宁tner, B. Brun, G. Bruner, H. M�鑼kl, On the Use of Electric Fields to Prevent Membrane Fouling of Process Integrated Cross Flow Filtration at Hybridoma Cell Cultures, Animal Cell Technology, p.215~220, 1997

Zumbusch Peter v., W. K., Gerd Brunner, Use of alternating electrical field as anti-fouling strategy in ultrafiltration of biological suspensions-Introduction of a new experimental procedure for crossflow filtration, J. Membr. Sci., vol.142, p.75~86, 1998

蔡明蒔,『化學機械研磨後清洗技術簡介』奈米通訊,第6卷,第1期,第21~27頁,1999

王建榮、林慶福、林必窕,『 半導體平坦化CMP技術 』全華科技圖書,台北市,1999

鄧宗禹、黃志彬、邱顯盛,『 化學機械研磨液之處理與回收:一、技術簡介』毫微米通訊,第9卷,第1期,第32~41頁,2002

羅金生、駱尚廉,『半導體廠化學機械研磨廢水回收再利用可行性評估』,土木水利集,第28卷,第4期,第64~71頁,2002

陳奎麟、林政紀、盧彭潭,『高濃度CMP廢水處理方法』產業環保工程實務研討會論文集,第260~273頁,2003

童國倫、李雨霖、呂坤宗,『計算流體力學簡介及其在化工上之應用(上)』化工技術,第11卷,第六期,第146~159頁,2003

林緯平,『力晶半導體節水經驗分享』,永續發展雙月刊,第11期,第43~52頁,2003

黃志彬、江萬豪,『產業廢水回收再利用— 半導體業』化工技術,第11卷,第12期,第154~167頁,2003年12月號

楊金鐘,『同步電混凝/電過濾技術於廢水處理之應用』 化工技術,第12卷,第2期,第181~190頁,2004年2月號

徐毓蘭、巫鴻章,『化學機械研磨廢水處理與回收技術簡介』台灣環保產業雙月刊,第29期,第13~16頁,2005
黃俞昌,『科學園區節約用水之努力與作法』節水季刊,第37期,第15~21頁,2005

沈克鵬、王麗婷,『高科技產業揮發性有機物排放特性與防治現況』化工技術,第14卷,第1期,第95~112頁,2006年元月號

連俊旭,『電滲透脫水床脫水速率及含水率分佈的探討』,碩士學位論文,中原大學化工所 (1998)

熊紀中,『以電場掃流過濾分離CMP廢水之研究』,碩士學位論文,私立中原大學化工所,2004

蔡智偉,『電場掃流微過濾分離Silica 懸浮液』,碩士學位論文,私立中原大學化工所,2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李美枝(1993):從有關公平判斷的結果看中國人之人己關係的界限。「本土心理學研究」1, 267-300。
2. 朱瑞玲(1987):中國人的社會互動:試論面子的運作。「中國社會學刊」。11期,頁23-53。
3. 危芷芬、黃光國(1998):積極義務與消極義務:台美大學生道德判斷的文化比較研究。「中華心理學刊」40, 137-153。
4. 沈克鵬、王麗婷,『高科技產業揮發性有機物排放特性與防治現況』化工技術,第14卷,第1期,第95~112頁,2006年元月號
5. 黃俞昌,『科學園區節約用水之努力與作法』節水季刊,第37期,第15~21頁,2005
6. 楊金鐘,『同步電混凝/電過濾技術於廢水處理之應用』 化工技術,第12卷,第2期,第181~190頁,2004年2月號
7. 黃志彬、江萬豪,『產業廢水回收再利用— 半導體業』化工技術,第11卷,第12期,第154~167頁,2003年12月號
8. 童國倫、李雨霖、呂坤宗,『計算流體力學簡介及其在化工上之應用(上)』化工技術,第11卷,第六期,第146~159頁,2003
9. 羅金生、駱尚廉,『半導體廠化學機械研磨廢水回收再利用可行性評估』,土木水利集,第28卷,第4期,第64~71頁,2002
10. 李美枝(1998):中國人親子關係的內涵與功能:以大學生為例。「本土心理學研究」9,.3-52。
11. 鄭伯壎(1995):家長權威與領導行為之關係:一個台灣民營企業主持人的個案研究。「中央研究院民族學研究所集刊」79, 119-173。
12. 韓貴香(2001):離婚婦女之生活資源與適應。「中華心理衛生學刊」14,67-106。
13. 蘇珊筠、黃光國(2003):退休老人與大學生在生活場域中的關係與面子。「中華心理學刊」,45,295-311。