跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 15:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃煜翔
研究生(外文):Yu-Hsiang Huang
論文名稱:木屑於渦旋式流體化床燃燒爐中氣態污染物排放之研究
論文名稱(外文):A Study of Gaseous Pollutant Emissions from Sawdust in a Vortexing Fluidized Bed Combustor
指導教授:錢建嵩
指導教授(外文):Chien-Song Chyang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:97
中文關鍵詞:木屑氮氧化物排放渦旋式流體化床燃燒爐
外文關鍵詞:SawdustNitrogen oxides emissionsVortexing fluidized bed combustor
相關次數:
  • 被引用被引用:9
  • 點閱點閱:452
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要

由於石油蘊藏量有限,及燃燒化石燃料造成的CO2排放過量的問題,促進了生質燃料的研究。流體化床燃燒爐可處理多種形態燃料與低NOx排放特性,而在燃燒生質燃料的研究上佔有一席之地。本研究將針對生質燃料之氮氧化物排放做一探討。
本研究係於一總高4.6 m之渦旋式流體化床燃燒爐中進行,其乾舷區內徑為0.75 m,氣泡床區為0.8 m × 0.4 m之矩形。以木屑做為燃料,矽砂為床質,探討不同操作條件對於燃燒爐中各區段氮氧化物分布及出口排放濃度之影響。實驗之主要操作參數為:床溫、過量空氣、配風比與床溫控制方式。
研究結果顯示,大部分NO與N2O於飛濺區生成,可歸因於木屑揮發物含量高達70% 以上之故,隨後在二次風注入混合區與乾舷區進行還原。各操作條件下,N2O之出口排放濃度極小,可考慮忽略。NO之排放濃度:隨床溫之增加而增加;當過量空氣小於40%,隨過量空氣增加而增加,但過量空氣大於40%,反而隨之下降;在靜床高20 cm之條件下,NO之排放有一最低值;以床內噴水控溫,噴水量大時,NO之排放濃度將明顯高於以熱傳管控溫。
木屑之熱值不低,易於燃燒,所產生之氮氧化物排放亦低於環保法規,應為一不錯之生質燃料選擇。
ABSTRACT

In this study, all the experiments were carried out in a pilot scale vortexing fluidized bed combustor of 0.75 m I.D. and 4.6 m in height. Sawdust was used as the fuel, and silica sand was employed as the bed material.
The effects of various operating conditions on NOx and N2O emissions were investigated, and the main operating parameters studied were bed temperature, excess air, and the method of bed temperature control.
The experiment results show that most formation of NOx and N2O take place in splashing zone, and then reduce in secondary air injection zone and freeboard. This is due to high volatile matter content of sawdust. Under each different operating condition, the N2O emissions are very small, and it can consider to be ignored. The NOx emission increases with the bed temperature. The NOx emission increases with excess air ratio from 10% to 40%, but the contrary result was found at a higher excess air ratio. At the static bed height of 20 cm, there is a lowest NOx emission. In addition, the amount of NOx is more with the method of water injection than heat transfer tube in bed temperature control.
Sawdust burns easily, and its heating value achieves above 3000 kcal/kg. Furthermore, the nitrogen oxides emissions from sawdust combustion conform to the environmental protection regulations. Thus sawdust could be a good choice for biofuel.
目錄

中文摘要…………………………………………………………………i
英文摘要…………………………………………………………………ii
誌謝……………………………………………………………………iii
目錄……………………………………………………………………iv
圖目錄…………………………………………………………………vii
表目錄……………………………………………………………………x
第一章 緒論…………………………………………………………1
第二章 文獻回顧……………………………………………………2
2-1 氮氧化物之特性…………………………………………3
2-2 氮氧化物對人體及環境之影響………………………5
2-2-1 氮氧化物對人體之影響……………………………5
2-2-2 一氧化氮對環境之影響……………………………5
2-2-3 氧化亞氮對環境之影響……………………………6
2-3 氮氧化物之來源與生成…………………………………8
2-3-1 一氧化氮之來源與生成……………………………8
2-3-2 二氧化氮之來源與生成……………………………13
2-3-3 氧化亞氮之來源與生成……………………………16
2-3-4 一氧化氮與氧化亞氮之關聯性……………………20
2-4 流體化床中操作變數對氮氧化物之影響………………23
2-4-1 過量空氣……………………………………………23
2-4-2 床溫…………………………………………………23
2-4-3 二次空氣……………………………………………24
2-4-4 床高…………………………………………………25
2-5 燃料性質對氮氧化物之影響……………………………26
2-5-1 木屑燃燒之氮氧化物排放…………………………26
2-5-2 氮含量……………………………………………26
2-5-3 揮發物含量…………………………………………27
2-5-4 粒徑…………………………………………………27
2-5-5 組成…………………………………………………27
2-6 氮氧化物之減量技術……………………………………30
2-6-1 一氧化氮之減量技術………………………………30
2-6-2 氧化亞氮之減量技術………………………………32
第三章 實驗設備及操作方法………………………………………34
3-1 實驗設備………………………………………………34
3-1-1 渦旋式流體化床焚化爐主體………………………34
3-1-2 進料系統……………………………………………35
3-1-3 送風及預熱系統……………………………………38
3-1-4 煙道氣處理系統及熱能回收設備…………………40
3-2 進料性質與製備…………………………………………41
3-2-1 燃料…………………………………………………41
3-2-2 床質…………………………………………………41
3-2-3 進料量之校正………………………………………42
3-3 操作方法及實驗變數……………………………………44
3-3-1 開爐…………………………………………………44
3-3-2 實驗操作變數………………………………………45
3-3-3 採樣方法……………………………………………45
第四章 結果與討論…………………………………………………48
4-1 溫度與氣態污染物分佈…………………………………48
4-1-1 溫度分佈………………………………………………………48
4-1-2 氮氧化物分佈………………………………………50
4-1-3 一氧化碳分佈………………………………………53
4-2 操作變數對氣態污染物排放之影響……………………55
4-2-1 床溫效應……………………………………………55
4-2-2 過量空氣效應………………………………………57
4-2-3 配風比效應…………………………………………60
4-2-4 靜床高效應…………………………………………67
4-2-5 控溫方式之效應……………………………………70
4-3 燃料中含氮物質之討論…………………………………72
第五章 結論…………………………………………………………76
符號說明………………………………………………………………78
參考文獻………………………………………………………………79
附錄A…………………………………………………………………87
附錄B…………………………………………………………………89
附錄C…………………………………………………………………91
附錄D…………………………………………………………………91
作者自述………………………………………………………………97
圖目錄

Figure 2-1 Scheme of reaction for prompt NOx .…………………11
Figure 2-2 Scheme of conversion of fuel-nitrogen …………………13
Figure 2-3 Reaction path diagram illustrating the re-action mechanism by which fuel-N is converted to NO, N2O and N2. ………22
Figure 3-1 The scheme of the process and status of the fluidized bed combustion system. ………………………………………35
Figure 3-2 Schematic diagram of the vortexing fluidized bed combustor…………………..……………………………36
Figure 3-3 Top view for the tangential secondary air injection in the vortexing fluidized bed combustor. ………….……………38
Figure 3-4 Size distribution of the bed material. …………………42
Figure 4-1 Temperature distributionin the vortexing fluidized bed combustor with various excess air (bed temperature = 700℃; Q1 = stoichiometric air). ……………………48
Figure 4-2 Figure 4-2 NO concentration at various distances above the distributor (bed temperature = 700℃; Q1 = stoichiometric air). ……………………………………………………50
Figure 4-3 N2O concentration at various distances above the distributor (bed temperature = 700℃; Q1 = stoichiometric air). ……………………………………………………51
Figure 4-4 CO concentration at various distances above the distributor (bed temperature = 700℃; Q1 = stoichiometric air). ……………………………………………………53
Figure 4-5 Effect of the bed temperature on NOx and N2O emission (excess air ratio = 60%;Q1 = stoichiometric air; Q2 = 60% stoichiometric air). ……………………………………55
Figure 4-6 Effect of the bed temperature on CO emission (excess air ratio = 60%;Q1 = stoichiometric air; Q2 = 60% stoichiometric air). ……………………………………57
Figure 4-7 Effect of the excess air ratio on NOx and N2O emission (bed temperature = 700℃; Q1 = stoichiometric air). ……………………………………………………58
Figure 4-8 Effect of the excess air ratio on CO emission (bed temperature = 700℃; Q1 = stoichiometric air). ………60
Figure 4-9 Effect of the primary/total air ratio on NOx and N2O emission (bed temperature = 700℃; excess air ratio = 40%). …………………………………………………61
Figure 4-10 Effect of the primary/total air ratio on CO emission (bed temperature = 700℃; excess air ratio = 40%). …………62
Figure 4-11 Effect of the primary/total air ratio on NOx and N2O emission (bed temperature = 700℃; excess air ratio = 60%). ……………………………………………………64
Figure 4-12 Effect of the primary/total air ratio on CO emission (bed temperature = 700℃; excess air ratio = 60%). …………65
Figure 4-13 Effect of the static bed height on NOx and N2O emission (bed temperature = 700℃; excess air ratio = 60%; Q1 = stoichiometric air; Q2 = 60% stoichiometric air). ……67
Figure 4-14 Effect of the static bed height on CO emission (bed temperature = 700℃; excess air ratio = 60%; Q1 = stoichiometric air; Q2 = 60% stoichiometric air). ………68
Figure 4-15 Effect of the different bed temperature control on NOx and N2O emission (excess air ratio = 60%; Q1 = stoichiometric air; Q2 = 60% stoichiometric air). ………………………70
Figure 4-16 The main ways of conversion of N-containing compound in FBC. ………………………………………………….71
Figure C-1 Calibration curve of sawdust. ……………………………90


表目錄

Table 2-1 Equilibrium constants for the formation of NO (N2 + O2 � 2NO) …………………………………………………16
Table 2-2 Equilibrium constants for the formation of NO2 (NO + 1/2 O2 � NO2) ……………………………………………….16
Table 3-1 The properties of fuel …………………………………41
Table 3-2 The experimental conditions ……………………………46
Table 4-1 Comparison with previous investigations of FBC on NOx and N2O emission …………………………………………73
參考文獻

Aho, M. J. and J. T. Rantanen, “Emissions of Nitrogen Oxides in Pulverized Peat Combustion between 730 and 900℃”, Fuel 68, 586-590 (1989).
Aho, M. J., J. P. Hamalainen and J. L. Tummavuori, “Conversion of Peat and Coal Nitrogen through HCN and NH3 to Nitrogen Oxides at 800℃”, Fuel 72, 837-841 (1993).
Amand, L. E. and B. Leckner, “Oxidation of Volatile Nitrogen Compounds during Combustion in Circulating Fluidized Bed Boilers”, Energy & Fuels 5, 809-815 (1991).
Amand, L. E. and S. Andersson, “Emissions of Nitrous Oxide From Fluidized Bed Boilers”, Proc. Inter. Conf. Fluid. Bed Combust. 10th, 49-56 (1989).
Armesto, L., A. Bahillo, A. Cabanillas, K. Veijonen, J. Otero, A. Plumed, and L. Salvador, “Co-combustion of Coal and Olive Oil Industry Residues in Fluidized Bed”, Fuel 82, 993-1000 (2003).
Armesto, L., H. Boerrigter, A. Bahillo and J. Otero, “N2O Emissions from Fluidized Bed Combustion. The Effect of Fuel Characteristics and Operation Conditions”, Fuel 82, 1845-1850 (2003).
Arthkamp, J. and H. Kremer, “Studies on The Formation of Nitrous Oxide (N2O) in Coal Flames”, Proc. the 2nd Inter. Symp. Coal Combustion Sci. and Tech., 129-136 (1991).
Beer, J. M. and G. B. Martin, “Application of Advanced Technology for NO Control: Alternate Fuels and Fluidized Bed Coal Combustion”, AIChE Sym. Ser. 74(175), 93-114 (1978).
Beer, J. M., A. F. Sarofim and Y. Y. Lee, “NO Formation and Reduction in Fluidezed Bed Combustion of Coal”, Proc. Inter. Conf. Fluid. Bed Combust. 6th, 942-955 (1980).
Bergsma, F., “Abatement of NOx from Coal Combustion. Chemical Background and Present State of Technical Development”, Ind. Eng Chem. Process 24, 1-7 (1985).
Boavida, K., I. Gulyurtlu, L. S. Lob and I. Cabrita, “N2O Formation during Coal Combustion in Fluidised Beds-Is It Controlled by Homogeneous or Heterogeneous Reactions?”, Energy Convers. Mgmt., 37, 1271-1278 (1995).
Bramer, E. A. and M. Valk, “Nitrous Oxide and Nitric Oxide Emissions by Fluidized Bed Combustion”, Proc. Inter. Conf. Fluid. Bed Combust. 11th, 701-707 (1991).
Chen, S. L., D. W. Pershing and G. B. Martin, “Fate of Coal Nitrogen during Combustion”, Fuel, 61, 1218-1224 (1982).
Cobb, G. P. and R. S. Braman, “Relationships between Nitrous Acid and Other Nitrogen Oxides in Urban Air”, Chemosphere, 31, 2945-2957 (1995).
Collings, M. E., M. D. Mann, B. C. Young and P. E. Botros, “The Effect of Coal-Fuel Properties on N2O Emissions in Fluidized-Bed Combustion”, Proc. Inter. Conf. Fluid. Bed Combust. 12th, 619-627 (1993)
De Diego, L. F., C. A. Londono, X. S. Wang and B. M. Gibbs, “Influence of Operating Parameters on NOx and N2O Axial Profiles in a Circulating Fluidized Bed Combustor”, Fuel 75, 971-978 (1996).
De Soete, G. G., E. Croiset and J. R. Richard, “Heterogenous Fomation of Nitrous Oxide from Char-Bound Nitrogen”, Combustion and Flame, 117, 140-154 (1999)
De Soete, G., “Heterogeneous NO and N2O Formation from Bound Nitrogen during Char Combustion”, 23rd Symposium Combustion, The Combustion Institute, 1257-1264 (1990).
Furusawa, T., S. Ishikawa, S. Sudo and D. Kunii, “The Effect of Fuels on Nitric Oxide Emission of Fluidized Bed Combustor for Carbonaceous Materials”, J. Chem. Eng. Jpn. 16(1), 76-77 (1983).
Furusawa, T., T. Honda, J. Takano and D. Kunii, “Abatement of Nitric Oxide Emission in Fluidized Bed Combustion of Coal”, J. Chem. Eng. Japan, 11(3), 377-383 (1978).
Gani, A. and I. Naruse, “NO and N2O Formation/decomposition Characteristics during Co-combustion of Coal with Biomass”, Proc. Int. Conf. Fluid. Bed Combust. 18th, 219-223 (2005).
Gokulakrishnan, P. and A. D. Lawrence, “An Experimental Study of the Inhibiting Effect of Chlorine in a Fluidized Bed Combustor”, Combustion and Flame 116, 640-652 (1999).
Gulyurtlu, I., H. Esparteiro and I. Cabrita, “N2O Formation during Fluidized Bed Combustion of Chars”, Fuel, 73, 1098-1102(1994).
Hämäläinen, J. P., M. J. Aho and J. L. Tummavuori, “Formation of Nitrogen Oxides from Fuel-N through HCN and NH3: a Model-Compound Study”, Fuel, 73, 1894-1898 (1994).
Haynes, B. S., D. Iverach and N. Y. Kirov, “The Behavior of Nitrogen Species in Fuel Rich Hydrocarbon Flames”, in Fifteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, 1103-1112 (1975).
Horio, M., S. Mori, T. Furusawa and S. Tamanuki, “Research and Development of NO Emission Abatement in a Fluidized Bed Coal Combustor in Japan”, Proc. Int. Conf. Fluid. Bed Combust. 6th, 968-978 (1980).
Houser, T. J., M. E. Mcarville and Gu. Z. Ying, “Nitric-Oxide Formation from Fuel Nitrogen Model-Compound”, Fuel, 67, 642-650 (1988).
Johnsson, J. E., and K. Dam-Johansen, “Formation and Reduction of NOx in a Fluidized Bed Combustor”, Proc. Int. Conf. Fluid. Bed Combust. 11th, 1389-1397 (1991).
Khan, W. Z. and B. M. Gibbs, “Simultaneous Removal of NOx and SO2 by Limestone and Ammonia During Unstaged and Staged Fluidized Bed Combustion”, Proc. Int. Conf. Fluid. Bed Combust. 11th, 99-105 (1991).
Kilpenen, P. and M. Hupa, “Homogeneous N2O Chemistry at Fluidized Bed Combustion Conditions: A Kinetic Modeling Study”, Combustion and Flame, 85, 94-104 (1991).
Kilpinen, P., T. Norström, A. Brink, E. Vakkilainen and M. Hupa, “Comparisons of the Validity of Different Simplified NH3-Oxidation Mechanisms for Combustion of Biomass”, Energy and Fuels 14, 947-952 (2000).
Kouprianov, V. I. and W. Permchart, “Emissions From a Conical FBC Fired with a Biomass Fuel”, Applied Energy 74, 383-392 (2003).
Kramlich, J. C., J. A. Cole, J. M. McCarthy and W. S. Lanier, “Mechanisms of Nitrous Oxide Formation in Coal Flames”, Combustion and Flame, 77, 375-384 (1989).
Leckner, B. and A. Lyngfelt, “Optimization of Emissions from Fluidized Bed Combustion of Coal, Biofuel and Waste”, Int. J. Energy Res. 26, 1192-1202 (2002).
Lee, Y. Y., A. Sekthira and C. M. Wong, “The Effects of Calcined Limestones on the NH3-NO-O2 Reactions”, Proc. Int. Conf. Fluid. Bed Combust. 8th, 1208-1218 (1985).
Leppalahti, J. and T. Koljonen, “Selective Catalytic Oxidation of NH3 in Gasfication Gas. 2. Oxidation on Aluminum Oxides and Aluminum Silicates”, Energy & Fuels 11, 39-45 (1997).
Liu, D. C., T. Mi, B. X. Shen, B. Feng and F. Winter, “Reducing N2O Emission by Co-combustion of Coal and Biomass”, Energy & Fuels 16, 525-526 (2002).
Liu, H. and B. M. Gibbs, “The Influence of Calcined Limestone on NOx and N2O Emission From Char Combustion in Fluidized Bed Combustors”, Fuel, Vol. 80, 1211-1215 (2001).
Lohuis, J. A. O., P. J. J. Tromp and J. A. Moulijn, “Parametric Study of N2O Formation in Coal Combustion”, Fuel 71, 9-13 (1992)
Lu, Y., A. Jahkola, I. Hippinen and J. Jalovaara, “The Emissions and Control of NOx and N2O in Pressurized Fluidized Bed Combustion”, Fuel 71, 693-699 (1992).
Miccio, F., G. Löffler, V. J. Wargadalam and F. Winter, “The Influence of SO2 Level and Operating Conditions on NOx and N2O Emissions during Fluidized Bed Combustion of Coals”, Fuel 80, 1555-1566 (2001).
Nelson, P. F. and M. S. Kelly and M. J. Wornat, “Conversion of Fuel Nitrogen in Coal Volatiles to NOX Precursors under Rapid Heating Conditions”, Fuel, 70, 403-407 (1991).
Norström, T., P. Kilpinen, A. Brink, E. Vakkilainen and M. Hupa, “Comparisons of the Validity of Different Simplified NH3-Oxidation Mechanisms for Combustion of Biomass”, Energy & Fuels 14, 947-952 (2000).
Olofsson, G., W. Wang, Z. Ye, I. Bjerle and A. Andersson, “Repressing NOx and N2O Emissions in a Fluidized Bed Biomass Combustor”, Energy & Fuels 16, 915-919 (2002).
Pels J. R., M. A. Wojtowicz, F. Kapteijn and J. A. Moulijn, “Trade-Off between NOx and N2O in Fluidized-Bed Combustion of Coals”, Energy and Fuels, 9, 743-752 (1995).
Permchart, W. and V. I. Kouprianov, “Emission Performance and Combustion Efficiency of a Conical Fluidized-bed Combustor Firing Various Biomass Fuels”, Bioresource Technol. 92, 83-91 (2004).
Shaw, J. T., “Emissions of Nitrogen Oxides in Fluidized-Bed Combustion and Applications”, J. R. Howard, Applied Science Publishers, London and New York, Chap. 6, 227-260 (1983).
Shen, B. X., T. Mi, D. C. Liu, B. Feng, Q. Yao and F. Winter, “N2O Emission under Fluidized Bed Combustion Condition”, Fuel Process. Technol. 84, 13-21 (2003).
Shimizu, T., J. Asazuma, M. Shinkai, S. Matsunaga, K. Yamagiwa and N. Fujiwara, “Simultaneous Reduction of NOx, N2O, SO2, Emissions from a Fluidized Bed Coal Combustor Using Alternative Bed Material”, J. Chem. Eng. Jpn 36, 782-787 (1983).
Shimizu, T., M. Satoh, K. Sato, M. Tonsho and M. Inagaki, “Reduction of SO2 and N2O Emissions without Increasing NOx Emission from a Fluidized Bed Combustor by Using Fine Limestone Particles”, Energy & Fuels 16, 161-165 (2002).
Shimizu, T., M. Satoh, K. Sato, M. Tonsho and M. Inagaki, “Simultaneous Reduction of SO2, NOx, and N2O Emissions from a Two-Stage Bubbling Fluidized Bed Combustor”, Energy & Fuels 14, 862-868 (2000).
Sugiyama, S., S. Kagawa, H. Kamiya and Horio, M. “Chlorine Behavior in Fluidized Bed Incineration of Refuse-Derived Fuels”, Environ. Eng. Sci. 15, 97-105 (1998).
Svoboda, K. and M. Hartman, “Formation of NOx in Fluidized Bed Combustion of Model Mixtures of Liquid Organic Compounds Containing Nitrogen”, Fuel 70, 865-871 (1991).
Svoboda, K. and M. Pohořelý, “Influence of Operating Conditions and Coal Properties on NOx and N2O Emissions in Pressurized Fluidized Bed Combustion of Subbituminous Coals”, Fuel 83, 1095-1103 (2004).
Svoboda, K., M. Pohořelý and M. Hartman, “Effects of Operating Conditions and Dusty Fuel on the NOx, N2O, and CO Emissions in PFB Co-combustion of Coal and Wood”, Energy & Fuels 17, 1091-1099 (2003).
Tatebayashi, J., Y. Okada, K. Yano and S. Ikeda, “Simultaneous NOx and SO2 Emission Reduction with Fluidized Bed Combustion”, Proc. Int. Conf. Fluid. Bed Combust. 6th, 986-995 (1980)
Topal, H., A. T. Atimtay and A. Durmaz, “Olive Cake Combustion in a Circulating Fluidized Bed”, Fuel 82, 1049-1056 (2003).
Tullin, C. J., A. F. Sarofim and J. M. Beer, “Formation of NO and N2O Coal Combustion: The Relative Importance of Volatile and Char Nitrogen”, Proc. Int. Conf. Fluid. Bed Combust. 12th, 599-609 (1993).
Wang, W. X. and K. M. Thomas, “NO Release and Reactivity of Chars during Combustion: The Effect of Devolatilization Temperature and Heating Rate”, Energy and Fuels 10, 409-416 (1996).
Weiss, R. F., “The Temporal and Spatial Distribution of Tropospheric Nitrous Oxide”, J. Geophys. Res., 86, 7185 (1981).
Wen, C. Y. and Y. H. Yu, “A Generalized Method for Predicting the Minimum Fluidized Velocity”, AIChE J. 12(3), 610-612 (1966).
Wen, C. Y. and Y. H. Yu, “Mechanics of Fluidization”, Chem. Eng. Progr. Sym. Ser. 62, 100-111 (1966).
Wark, K. and C. F. Warner, “Air Pollution: Its Origin and Control”, 2nd edition, Harper Collins Publishers, USA (1981).
Wójtowicz, M. A., J. A. O. Lohuis, P. J. J. Tromp, J. A. Moulijn, “N2O Formation in Fluidised-Bed Combustion of Coal”, Proc. Inter. Conf. Fluid. Bed Combust. 11th, 1013-1018 (1991).
Zelodvich, Y. B., P. Y Sadovinikov and D. A. Frank-Kamenetskii, “Oxidation of Nitrogen in Combustion”, M. Shelef, Tran., Academy of USSR, Institute of Chemical Phsics. Moscow-Leningrad (1947).
Zhang, C. L., G. C. Yang, D. C. Liu, H. P. Chen, D. Y. Liu and R. Wang, “An Experimental Study of the Gaseous Pollutant Emissions in Petroleum-coke-fired Fluidized Beds”, Proc. Inter. Conf. Fluid. Bed Combust. 17th, 267-271 (2003).

何燦穎,【工業爐降低氮氧化物技術】,技術與訓練,19卷1期,26-41,(1994)。
李國忠,【科學發展】,338期,28-35,(2005)。
李祿興,【高揮發性物質於流體化床燃燒爐中之燃燒:一氧化氮與氧化亞氮排放】,私立中原大學化學工程學系碩士論文,(2000)。
林清山,【渦旋式流體化床燃燒爐中氮氧化物之排放研究】,私立中原大學化學工程學系碩士論文,(1998)。
張君正、張木彬,【氮氧化物生成機制與控制技術之探討】,工業污染防治,第50期,(1994)。
楊任徵,【氣候公約第三次締約國大會】,氣候變化綱要公約速報9,(1997)。
楊宗翰,【廢液於渦旋式流體化床焚化爐中氧化亞氮排放之研究】,私立中原大學化學工程學系碩士論文,(2003)。
楊勝鴻,【渦旋式流體化床燃燒爐中一氧化氮與氧化亞氮之研究】,私立中原大學化學工程學系碩士論文,(1999)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top