跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 06:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王可瑄
研究生(外文):Ko-Shung Wang
論文名稱:奈米過濾處理模擬電廠廢水之研究
論文名稱(外文):Nanofiltration of the Simulated Effluents from the Power Plant
指導教授:童國倫童國倫引用關係
指導教授(外文):Kuo-Lun Tung
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:97
中文關鍵詞:電廠廢水奈米過濾
外文關鍵詞:NanofiltrationPower Plant
相關次數:
  • 被引用被引用:3
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要
火力發電廠多使用煙氣除硫(flue gas desulfurization,簡稱FGD)洗滌系統以排除鍋爐中之污染物,但經由洗滌系統排放之廢水其組合成份有相當大的變化,因此設計一個符合各種規範的FGD廢水處理系統是極具挑戰性的。基於環境保護、降低能源消耗以及提升經濟效益的需求,建立一套廢水回收處理技術儼然成為一新興技術人員亟求的目標。本研究嘗試圖以奈米過濾方法處理自行配置之FGD廢水,評估以奈米過濾取代原先以FGD廢水處理中之離子軟化槽的可能性。實驗結果顯示指出,當一價離子和二價離子通過濾膜時,後者有明顯的排斥效果。在進料液中提高陰離子的濃度會造成離子排斥效應,因而妨礙陽離子擴散,反之亦然。而有機物質的存在則會影響進料液的pH值,進而造成濾膜中羧基的質子化。而此一性質的改變會降低濾膜中的荷負電量,進而降低離子的立體障礙,導致並且提高流率濾速提升。最後,本研究亦針對以低壓奈米過濾法處理無機鹽類之輸送現象做一理論評估。理論分析顯示:有效電荷密度、膜孔半徑以及離子強度是影響濾膜對一價離子截留率的主要因素。
Abstract

Many fossil fuel power plants employ flue gas desulfurization (FGD) using scrubbing systems to remove contaminants from boiler exhaust gases. The waste composition in the effluent from the scrubbing system varies widely, designing an FGD wastewater treatment system that meets regulations can be challenging. Thus, aspirations for new wastewater treatment/recovery processes with environmental friendly technologies, lower energy consumption, and improved economics have emerged. In this study, the simulated FGD effluent from activated carbon column was treated by nanofiltration (NF) process to assess the potential of NF to replace softening column in FGD wastewater treatment process. Experimental results depict that NF membranes notably reject divalent ions. While monovalent ions and divalent ions passing through, the latter had a significant effect on the rejection of NF process. Increase of the concentration of anion in feed solution will results in an ionic exclusion effect and thus retarding cation diffusion, and vice versa to the case of cations. The existence of organic matter may affect the pH value of the feed solution, which will result in protonation of the carboxylic group in the membrane. This change of membrane property will reduce the amount of negative charge of the membrane and caused a reduction of steric exclusion to the ions as well as a increase of flow rate. Finally, the transport parameters of salt in this low-pressure NF process were also evaluated. Theoretical analysis reveals that effective charge density, pore radii and the ionic strength determine the rejection of monovalent ions.
奈米過濾處理模擬電廠廢水之研究
Nanofiltration of the Simulated Effluents from the Power Plant


目 錄

中文摘要 ………………………………………………………………… Ⅰ
英文摘要 ………………………………………………………………… Ⅱ
致謝 ………………………………………………………………… Ⅲ
目錄 ………………………………………………………………… Ⅴ
圖索引 ………………………………………………………………… Ⅶ
表索引 ………………………………………………………………… Ⅸ

第一章 緒論………………………………………………………… 1
第二章 文獻回顧…………………………………………………… 4
2-1 奈米濾膜及奈米過濾……………………………………… 4
2-1.1 奈米濾膜的發展…………………………………… 5
2-1.2 奈米濾膜的分類及分離性能…………………… 7
2-1.3 奈米過濾之應用………………………………………… 12
2-2 奈米過濾之理論模式發展………………………………………………… 16
2-3 奈米過濾分離效能之探討…………………………………… 26
2-3.1 奈米過濾分離原理……………………………………… 26
2-3.2 影響分離效果之操作變因…………………………… 29
第三章 實驗材料與方法……………………………………………… 31
3-1 實驗裝置及物料………………………………………… 31
3-1.1 實驗裝置………………………………………… 32
3-1.2 實驗材料………………………………………… 34
3-1.3 實驗設備與分析儀器…………………………… 39
3-2 實驗方法及步驟………………………………………… 41
3-2.1 實驗目的………………………………………… 41
3-2.2 實驗步驟………………………………………… 41
3-3 實驗分析方式…………………………………………… 43
第四章 結果與討論…………………………………………………… 45
4-1 奈米濾膜基本特性探討…………………………… 45
4-1.1 奈米濾膜之結構參數……………………………… 46
4-1.2 奈米濾膜之荷電特性……………………………… 51
4-2 奈米過濾對於雙成份系統之分離機制…………………… 54
4-2.1 雙成份系統之分離機制…………………………… 54
4-2.2 雙成份系統之數值解……………………………… 71
4-3 奈米過濾對於多成份系統之分離機制…………………… 77
4-3.1 多成份系統之分離機制…………………………… 77
4-3.2 有機、無機混合系統之分離機制…………………… 82
第五章 結論……………………………………………………………… 86

參考文獻 ………………………………………………………………… 88
符號說明 ………………………………………………………………… 93
附 錄 …………………………………………………………………
附錄A:膜電性量測裝置……………………………………… 94
附錄B:奈米濾膜Desal DK………………………………… 95
附錄C:奈米濾膜NF90……………………………………… 96
自 述 ………………………………………………………………… 97

圖索引
圖目錄 頁次
第一章

Fig. 1.1-1 Traditional wastewater treatment process in fossil-heated power plant. .…………………………………………………………….………………… 2 2


第二章

Fig. 2.1-1 Membrane filtration spectrum spectrum. . .………………………………….….………….….………. 5

Fig. 2.1-.2 Membrane separation spectrum spectrum.. .………………………………….….………. 8 10


第三章

Fig. 3.1-1 Schematic diagram of dead-end filtration system 32

Fig. 3.1-2 Construction diagram of stirred cell ccecell.. ………………………………………...…….….…. 31 33



第四章

Fig. 4.1-1 Stokes radii of the PEGs versus the respective molecular weight cutoff. 47

Fig. 4.1-2 Rejections of the PEGs solute versus the respective molecular weight
cutoff. 48

Fig. 4.1-3 Zeta potential of commercial nanofiltration membranes under different
pH values 53

Fig. 4.2-1 Effect of NaCl concentrateion on the rejection of Cl- and Na+ for
nanofiltration membrane (a) the rejection of Cl-
(b) the rejection of Na+. 56

Fig. 4.2-2 Effect of ionic strength for nanofiltration membrane
(a) low ionic strength (b) high ionic strength. 57

Fig. 4.2-3 Effect of Na2SO4 concentrateion on the rejection of SO42- 8
for nanofiltration membrane. 58

Fig. 4.2-4 Effect of Na2SO4 concentrateion on the flux for nanofiltration 59

Fig. 4.2-5 Effect of MgCl2 concentrateion on the rejection of Cl-
for nanofiltration membrane. 60



Fig. 4.2-6 Effect of the ratio of membrane porosity to membrane thickness
for nanofiltration membrane (a) low value (b) high value. 61

Fig. 4.2-7 Effect of MgSO4 concentrateion on the rejection of SO42-
for nanofiltration membrane. 63

Fig. 4.2-8 Effect of MgSO4 concentrateion on the flux for nanofiltration 63

Fig. 4.2-9 Effect of different solutes for nanofiltration membrane
(a) NaCl and Na2SO4 (b) MgCl2 and MgSO4.(b) MgCl2 and MgSO4. 65

Fig. 4.2-10 4.2.94.2.10 Effect of different solutes (NaCl/Na2SO4) on the rejection
for nanofiltration membrane (a) the rejection of anions
(b) the rejection of cation. 66

Fig. 4.2-11 Effect of different solutes (MgCl2/MgSO4) on the rejection
for nanofiltration membrane (a) the rejection of anions
(b) the rejection of cation. 67

Fig. 4.2-12 Effect of different solutes (NaCl/MgCl2) on the rejection membrane …##
for nanofiltration membrane (a) the rejection of anion
(b) the rejection of cations. 69

Fig. 4.2-13 Effect of different solutes (Na2SO4/MaSO4) on the rejection
for nanofiltration membrane (a) the rejection of anion
(b) the rejection of cations. 70

Fig. 4.3-1 Rejection variation of ions from mixture vs. membrane type
(a) NaCl 2500ppm+Na2SO4 500ppm
(b) MgCl2 2500ppm+MgSO4 500ppm. 79


附 錄

Fig. A-1 Schematic diagram of streaming potential measurement for membrane. 94

Fig. B-1 AFM photographs of Desal DK membrane. 95

Fig. C-1 AFM photographs of NF90. 96





表索引
表目錄 頁次
第二章

Table 2.1-1 Comparison of rejection in reverse osmosis and nanofiltration 11


第四章

Table 4.1-1 Pure water permeability of membranes. 49

Table 4.1-2 Diffusivities and Stokes radii of neutral solutes and solute
permeabilities of membranes. 50

Table 4.1-3 Structural parameters of the studied membranes. 51

Table 4.1-4 Membrane charge density. 53

Table 4.2-1 Contaminants analyses on FGD wastewater. 54

Table 4.2-2 Zeta potential of membranes. 55

Table 4.2-3 Modelling the charge density of Desal DK membrane
under different concentration of anion.Na2SO4 (500ppm)
membrane ……………………………….………………………………………… 95 75

Table 4.2-4 Modelling the charge density of Desal DK membrane
under different concentration of cation. 75

Table 4.3-1 Zeta potential of membranes at mixture. 78

Table 4.3-2 Sulfate ions retention as a function of chloride ions from
(NaCl /Na2SO4) mixture. 80

Table 4.3-3 Sulfate ions retention as a function of chloride ions
(MgCl2 /MgSO4) mixture. 80

Table 4.3-4 Magnesium ions retention as a function of cations from
(NaCl /MgCl2 /CaCl2) mixture. 81

Table 4.3-5 Calcium ions retention as a function of cations from
(NaCl /MgCl2 /CaCl2) mixture. 81

Table 4.3-6 Ionic radius and Diffusive rate of the studied ions. 82

Table 4.3-7 Rejection of ions from mixture vs. rejection of ions from
mixture with acetialdehyde. 83


Table 4.3-8 Flux of ions from mixture vs. flux of ions from mixture
with acetialdehyde. 84

Table 4.3-9 Rejection of ions from mixture vs. rejection of ions from
mixture with acetic acid. 85
參考文獻

Akbari, A., S Desclaux., J. C. Remigy and P. Aptel, “Treatment of Textile Dye Effuluents Using a New Photografted Nanofiltration Membrane,” Desalination, 149, 101-107 (2002a).

Akbari, A., J. C. Remigy and P. Aptel, “Treatment of Textile Dye Effuluents Using a Polyamide-Based Nanofiltration Membrane,” Chem. Eng.Prog., 41,601-609(2002b).

Afonso, M. D., G. Hagmeyer and R. Gimbel., “Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions ,” Separation and Purification Technology, 22-23, 529-541(2001)

Bowen, W. R. and H. Mukhtar, “Characterisation of Prediction of Separation Performance of Nanofiltration Membranes,” J.Membr. Sci., 112, 263-274 (1996).

Bowen, W. R., A. W. Mohammad and N. Hilal, “Characterisation of Nanofiltration Membranes for Predictive Purposes-Use of Salts, Uncharged Solutes and Atomic Force Microcopy,” J.Membr. Sci., 126, 91-105 (1997).

Bowen, W. R. and A. W. Mohammad, “A Theoretical Basis for Specifying Nanofiltration Membranes-Dye/Salt/Water Streams,” Desalination, 117, 257-264 (1998).

Bowen, W. R., S. W. Julian and M. W. Paul, “Linearized Transport Model for Nanofiltration: Development and Assessment,” AICHE, 48(4), 760-773 (2002).

Braghetta, A., F. A. DiGiano and W. P. Ball, “Nanofiltration of Natural Organic Matter: pH and Ionic Strength Effects,” J. Environ. Eng-ASCE, 123, 628-641 (1997).

Childress, A. E. and M. Elimelech, “Effect of Solution Chemistry on the Surface Charge of Polymeric Reverse Osmosis and Nanofiltration Membrane,” J.Membr. Sci., 119, 253-268 (1996a).


Childress, A. E. and M. Elimelech, “Zeta Potential of Reverse Osmosis Membrane: Implications for Membrane Performance,” Water Treatment Technology Program Report (1996b).

Childress, A. E. and M. Elimelech, “Relating Nanofiltration Membrane Performance to Membrane Charge(Electrokinetic) Characteristics,” Environ. Sci. Tech., 34, 3710-3716 (2000).

Fievet, P., C. Labbez, A. Szymczyk, A. Vidonne, A. Foissy and J. Pagetti, “Electrolyte Transport through Amphoteric Nanofiltration Membranes,” Chem. Eng.Sci., 57, 2921-2931 (2002).

Gericke, G., “Plant Optimization: A Key Factor in Minimizing Natural Organic Matter in Power Station Make-up Water,” VGB PowerTech, 3 (2002) 93-96.

Hagmeyer, G. and R. Gimbel, “Modelling the Salt Rejection of Nanofiltration Membranes for Ternary Ion Mixtures and for Single Salt at Different pH Values,” Desalination, 117, 247-256 (1998).

Hagmeyer, G. and R. Gimbel, “Modelling the Salt Rejection of Nanofiltration Membranes Using Zeta Potential Measurements,” Sep. Pur. Tech., 15, 19-30 (1999).

Jiraratananon, R., A. Sungpet and P. Luangsowan, “performance Evaluation of Nanofiltration Membrane for Treatment of Effluents Containing Reactive Dye and Salt,” Desalination, 130, 177-183 (2000).

Joshi, M., A. K. Mukherjee and B. D. Thakur, “Development of a New Styrene Copolymer Membrane for Recycling of Polyester Fiber Dyeing Effluent,” J. Membr. Sci., 189, 23-40 (2001).

Kosutic, K., and B. Kunst, “RO and NF membrane fouling and cleaning and pore size distribution variations,” Desalination, 150 (2002) 113-120.

Koyuncu, I. and D. Topacik, “Effect of Organic Ion on the Separation of Salts by Nanofiltration Membranes,” J. Membr. Sci., 195, 247-263 (2002).



Lapointe, J. F., S. F. Gauthier, Y. Pouliot and C. Bouchard, “Effect of Hydrodynamic Conditions on Fractionation of b-lactoglobulin Tryptic Peptides Using Nanofiltration Membranes,” J. Membr. Sci., 212, 55-67 (2003).


Li, S. L., C. Li, D. Moënnoz, Y. S. Liu, X. L. Wang and Z. A. Cao, “Separation of L-glutamine From Fermentation Broth by Nanofiltration,” J. Membr. Sci., 222, 191-201 (2003).

Lhassani, A., M. Rumeau, D. Benjelloun and M. Pontie, “Selective demineralization of water by nanofiltration application to the defluorination of brackish water,” Water Res., 35 (2001) 3260-3264.

Martin-Orue, C., S. Bouhallab and A. Garem, “Nanofiltration of Amino Acid and Peptide Solutions: Mechanisms of Separation,” J. Membr. Sci., 142, 225-233 (1998).

Mehiguene, K., S. Taha, N. Gondrexon, J. Carbon and G. Dorange, “Copper Transfer Modeling through a Nanofiltration Membrane in the Case of Ternary Aqueous Solution,” Desalination, 127, 135-143 (2000).

Mohammad, A. W., “A Modified Donnan-Steric-Pore Model for Predicting Flux and Rejection of Dye-NaCl Mixture in Nanofiltration Membrane,” Sep. Sci. Tech., 37(5), 1009-1029 (2002).

Noël I, M., R.Lebrun and C. R. Bouchard, “Electro- Nanofiltration of a Textile Direct Dye Solution,” Desalination, 129, 125-136 (2000).

Nyström, M., L. Kaipia and S. Luque, “Fouling and Retention of Nanofiltration Membranes,” J. Membr. Sci., 98, 249-262 (1995).

Oak, M. S., T. Kobayashi, H. Y. Wang, T. Fukaya and N. Fujii, “pH Effect on Molecular Size Exclusion of Polyacrylonitrile Ultrafiltration Membrane Having Carboxylic Acid Group,” J. Membr. Sci., 123, 185-195 (1997).

Ozaki, H. and H. Li, “Rejection of Organic Compounds by Ultra-Low Pressure Reverse Osmosis Membrane,” Water Res., 36, 123-130 (2002).


Pontalier, P. Y., A. Ismail and M. Ghoul, “Mechanisms of the selective Rejection of Soulation in Nanofiltration Membranes,” Sep. Pur. Tech., 12, 175-181 (1997).


Pouliot, Y., M. C. Wijers, S. F. Gauthier and L. Nadeau, “Fractionation of Whey Protein Hydrolysates Using Charged UF/NF Membranes,” J. Membr. Sci., 158, 105-114 (1999).

Schaep, J., C. Vandecasteele, A. W. Mohammad and W. R Brown., “Analysis of the Salt Retention of Nanofiltration Membranes Using the Donna- Steric Partitioning Pore Model,” Sep. Sci. Tech., 34(15), 3009-3030 (1999).

Sheth, J. P., Y. Qin, K. K. Sirkar and B. C. Baltzis, “Nanofiltration-Based Diafiltration Process for Solvent Exchange in Pharmaceutical Manufacturing,” J. Membr. Sci., 211, 251-261 (2003).

Timmer, J. M. K., M. P. J. Speelmans and H. C. Van der Horst, “Separation of Amio Acids by Nanofiltration and Ultrafiltration Membranes,” Sep. Sci. Technol., 14, 133-144 (1998).

Tsuru, T., S. Nakao and S. Kimura, “Ion Separation by Bipolar Membrane in Reverse Osmosis,” J. Membr. Sci., 108, 269-278 (1995).

Van der Bruggen, B., B. Daems, D. Wilms and C. Vandecasteele, “Mechanisms of Retention and Flux Decline for the Nanofiltration of Dye Baths from the Textile Industry,” Sep. Pur. Tech., 22, 519-528 (2001).

Van der Bruggen, B. and C. Vandecasteele, “Removel of Pollutants from Surface Water and Groundwater by Nanofiltration: Overview of Possible Applications in the Drinking Water Industry,” Environ. Pollut., 122, 435-445 (2003).

Wang, X. L., A. L. Ying and W. N. Wang, “Nanofiltration of L-phenylalanine and L-aspartic Acid Aqueous Solution,” J. Membr. Sci., 196, 59-67 (2002).

Wang, X. L., T. Tsuru, M. Togoh, S. Nakao and S. Kimura, “Transport of organic electrolytes with electrostatic and steric-hindrance effects through nanofiltration membranes,” J. Chem.Eng., Japan, 28, 372-380 (1995).


Wang, X. L., T. Tsuru, S. Nakao and S. Kimura, “Electrolyte Transport through Nanofiltration Membranes by the Space-Charge Model and the Comparision with Teroell-Meyer-Sievers Model,” J. Membr. Sci., 103, 117-133 (1995).

Xu, Y., and R. E. Lebrun, “Investigation of the Solute Separation by Charged Nanofiltration Membranes: Effect of pH, Ionic Strength and Solute Type,” J. Membr. Sci., 158, 93-104 (1999a).

Xu, Y., and R. E. Lebrun, ”Treatment of Textile Dye Plant Effluent by Nanofiltration Membrane,” Sep. Sci. Tech., 34(13), 2501-2519 (1999b).


Yeom, C. K., S. H. Lee and J. M. Lee, “Effect of the Ionic Characteristics of Charged Membranes on the Permeation of Anion Solutes in Reverse Osmosis,” J. Membr. Sci., 169, 237-247 (2000).

Yu, S., C. Gao, H. Su and M. Liu, “Nanofiltration Used for Desalination and Concerntration in Dye Production,” Desalination, 140, 97-100 (2001).

黃明樟,“薄膜程序處理染整業放流水回收再利用之研究”,私立淡江大學水資源及環境工程研究所,碩士學位論文 (2001)。

陳志聖,“逆滲透膜廢水處理系統在火力發電廠之應用”,台電工程月刊,第663期,第91-112頁 (2003)。

江宜蓁,“薄膜電荷量測與膜過濾電動現象分析”,私立中原大學化學工程研究所,碩士學位論文 (2003)。

李佩玲,“極微濾薄膜技術處理染料水溶液之研究”,國立台灣科技大學化學工程研究所,碩士學位論文 (2003)。

王薇、杜啟雲,“納濾膜分離技術及其進展”,工業水處理,第24卷,第3期,第5-8頁 (2004)

童國倫、呂坤宗、李雨霖、胡哲嘉,“奈米過濾的發展及其應用”,化工技術,第51卷,第3期,第26-36頁 (2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top