跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/16 07:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:董睿軒
研究生(外文):Rui-Xuan Dong
論文名稱:聚醯亞胺-黏土奈米複合材料之合成及其特性探討
論文名稱(外文):Synthesis and Properties of Polyimide-Clay Nanocomposite Materials
指導教授:王宏文王宏文引用關係
指導教授(外文):Hong-Wen Wang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:122
中文關鍵詞:聚醯亞胺-黏土奈米複合材料介電特性
外文關鍵詞:PI-claydielectric propertynanocomposites
相關次數:
  • 被引用被引用:2
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分成三部分(1)雙改質劑有機化黏土並合成聚醯亞胺-黏土奈米複材(2)不同類型的黏土合成聚醯亞胺-黏土奈米複材。(3)含氟單體合成聚醯亞胺-黏土奈米複材。利用WAXRD觀察黏土層間距變化;TEM觀察黏土載聚醯亞胺中之分散狀況;TGA和DSC觀察聚醯亞胺-黏土奈米複材之熱性質;DMA觀察其機械性變化及LCR測其在變溫、變頻下的介電行為。
在第一部分研究中,我們藉著加入兩種改質劑使其增加與聚醯亞胺中的Dianhydride末端基之鍵結機率。利用此方法,增加了黏土在聚醯亞胺中之分散效果,進而提升PI-Clay奈米複材熱性質、機械性質和介電性。
在第二部分研究中,利用兩種黏土中其矽酸鹽層之負電荷分布於不同位置,使改質劑和高分子與黏土間鍵結方式不同,造成分散狀況及特性提升上的不同。由實驗結果得知,負電荷位於八面體時,其改質劑與其較易以凡得瓦爾力鍵結,黏土在PI中分散效果佳;位於四面體時,改質劑與其則以離子鍵或是共價鍵鍵結。
在第三部分研究中,我們利用兩種含氟與兩種不含氟單體合成聚醯亞胺-黏土奈米複材,測量其特性的差異。由實驗結果發現,介電特性上會有很明顯的變化,由於介電常數會因(1)黏土的分散程度(2)對稱性(3)氟含量(4)薄膜厚度的變化有關,單體含氟且對稱之複材,比不含氟之聚醯亞胺-黏土奈米複材介電常數更低。
Clay-dispersed polyimide nanocomposites were synthesized by a in-situ polymerization processes. By using the wide angle X-ray diffraction(WAXRD) and transmission electron microscopy (TEM) technique, polyimide inserted between the interlayer of montmorillonite (MMT) clay was indentified. The thermal and mechanical properties of polyimide-clay nanocomposites were studied by the TGA、DSC and DMA. The reduced moisture absorption of polyimide-clay nanocomposites was found to be related with content of clay. The dielectric properties of polyimide-clay nanocomposites were measured under frequency of 1kHz ~1MHz and temperature of 25℃~ 150℃.
Three major topics were investigated in the present study:First, PI-clay nanocomposites exhibit better intercalation/exfoliation, enhance thermal, mechanical properties and lower dielectric constants when double-swelling agents are used.
Second, PK 802, a clay with negative charge resident in its octahedral polyhedra, results in lower moisture absorption, dielectric constant and loss in PI-clay nanocomposies due to its weak ionic strength to polymer matrix.
Third, it was found that dielectric constant of PI-clay nanocomposites is related to the:(1) dispersion of clay, (2) symmetry of fluorine atom, (3) fluorine content in the PI, and (4) thickness of film specimen. Higher fluorine content in PI matrix results in lower dielectric constant.
目錄
摘要 I
Abstract III
發表SCI論文 V
謝 誌 VI
圖目錄 X
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
第二章 文獻介紹及回顧 4
2-1 奈米複合材料之簡介 4
2-2 有機-無機混成材料之種類與特性 6
2-3 無機層狀材料黏土之簡介 8
2-4 改質劑的簡介 11
2-5 聚醯亞胺的簡介 12
2-5.1 聚醯亞胺的介紹 12
2-5.2 聚亞醯胺之合成方式 14
2-5.3 聚醯亞胺的特性 19
2-5.4 影響聚醯亞胺介電行為的因素[44] 20
2-5.5 聚醯亞胺的開發與應用 24
2-6 介電原理 24
2-6.1 鬆弛現象(relaxation)[45-46] 29
第三章 實驗部分 31
3-1 實驗藥品 31
3-1.1蒙脫土(Montmorillonite) 31
3-1.2改質劑(Swelling agent) 31
3-1.3 單體 32
3-1.4 溶劑 34
3-2 儀器介紹 35
3-2.1廣角X-ray 繞射儀( Wide-angle XRD ) 35
3-2.2超薄切片機( Microtome ) 35
3-2.3穿透式電子顯微鏡( Transmission Electron Microscopy,TEM ) 36
3-2.4熱重分析儀( Thermal Gravimetric Analysis,TGA ) 36
3-2.5微差掃瞄式熱分析儀( Differential Scanning Calorimeter,DSC ) 36
3-2.6動態機械分析儀( Dynamic Mechanical Analyses,DMA ) 37
3-2.7介電量測儀( Agilent Precision LCR Meters,LCR ) 37
3-2.8其它器材 37
3-3 儀器鑑定部分 38
3-3.1 Wide-angle XRD鑑定 38
3-3.2穿透式電子顯微鏡(TEM) 38
3-3.3熱重分析儀( Thermal Gravimetric Analysis,TGA ) 39
3-3.4微差掃瞄式熱分析儀( Differential Scanning Calorimeter,DSC ) 39
3-3.5動態機械分析儀( Dynamic Mechanical Analyses,DMA ) 39
3-3.6介電量測儀( Agilent Precision LCR Meters,LCR ) 40
3-4 無機層狀材料的親油化 40
3-4.1單改質劑親油性蒙脫土之製備 41
3-4.2雙改質劑親油性蒙脫土之製備 42
3-5 聚醯亞胺(Polyimide)/黏土奈米複合材料之製備 44
3-5.1 聚醯亞胺薄膜的合成 44
3-5.2聚亞醯胺/黏土奈米複合材料之薄膜合成 45
3-5.3聚醯亞胺/黏土奈米複合材料之研究流程圖 46
第四章 聚醯亞胺 (Polyimide)/黏土混成材料之性質研究結果與討論 47
4-1用雙改質劑有機化黏土並合成聚醯亞胺/黏土奈米複材及性質鑑定[47-77] 47
4-1.1 Wide-angle XRD分析 50
Compound Code 51
4-1.2穿透式電子顯微鏡 (TEM) 54
4-1.3熱性質分析(Thermal properties) 57
4-1.4機械性質分析(Machanical analysis) 59
4-1.5 吸水性質(Moisture Absorption) 61
4-1.6 介電特性分析(LCR) 63
4-2 不同類型黏土對聚醯亞胺/黏土奈米複材特性的影響[78-85] 71
4-2.1 Wide-angle XRD分析 72
Compound Code 73
4-2.2穿透式電子顯微鏡(TEM) 74
4-2.3熱性質分析(Thermal properties) 76
4-2.4機械性質分析(Machanical analysis) 78
4-2.5吸水性質(Moisture Absorption) 80
4-2.6介電特性分析(LCR) 81
4-3 含氟單體對聚醯亞胺-黏土奈米複材特性探討[86-90] 85
4-3.1 Wide-angle XRD分析 87
4-3.2穿透式電子顯微鏡(TEM) 89
4-3.3熱性質分析(Thermal properties) 91
4-3.4機械性質分析(Machanical analysis) 93
4-3.5吸水性質(Moisture Absorption) 95
4-3.6介電特性分析(LCR) 96
第五章 結論 101
第六章 參考文獻 103


圖目錄
圖2- 1高分子/黏土混成複合材料的種類 7
圖2- 2 Smectite Clay 結構圖 9
圖2- 3縮合型聚亞醯胺 14
圖2- 4加成型聚亞醯胺 15
圖2- 5聚醯亞胺的合成示意圖 18
圖2- 6在不同頻率作用之極化機制對介電常數的貢獻 21
圖2- 7材料的四個極化機制圖 25
圖2- 8極化機制與頻率之間的關係圖 27
圖2- 9高分子的介電損失與溫度之間的關係 30
圖3- 1聚醯亞胺薄膜之製備流程圖 …………………………………….44
圖3- 2聚亞醯胺/黏土奈米複合材料之研究流程圖 46
圖4- 1改值劑的化學結構式 ….…………………………………………48
圖4- 2 (a)單一改質劑 (b)雙改質劑 有機化黏土的反應機制圖 49
圖4- 3 Pristine Clay及利用不同改質劑有機化Clay的XRD圖譜 52
圖4- 4不同比例PI-Clay(DAETPB-ODA)奈米複合材料的XRD圖譜 52
圖4- 5 Pure PI及含3wt%不同有機化Clay之PI-Clay奈米複合材料的XRD圖譜 53
圖4- 6 (a) PI-Clay3% (DAETPB-ODA) (×10k), (b) PI-Clay3% (DAETPB-ODA) (×50k), (c) PI-Clay3%(DAETPB) (×10k),(d) PI-Clay3% (DAETPB) (×50k) 之TEM圖 55
圖4- 7 Pure PI及含3wt%不同有機化Clay之PI-Clay奈米複合材料的DMA圖譜 60
圖4- 8不同有機化Clay合成之PI-Clay奈米複合材料的Moisture absorption圖譜 62
圖4- 9不同比例PI-Clay奈米複合材料在頻率1 kHz時的介電常數圖譜 65
圖4- 10不同比例PI-Clay奈米複合材料在頻率10 kHz時的介電常數圖譜 65
圖4- 11不同比例PI-Clay奈米複合材料在頻率100 kHz時的介電常數圖譜 66
圖4- 12不同比例PI-Clay奈米複合材料在頻率1 MHz時的介電常數圖譜 66
圖4- 13不同比例PI-Clay奈米複合材料在頻率1 kHz時的介電損失圖譜 67
圖4- 14不同比例PI-Clay奈米複合材料在頻率10 kHz時的介電損失圖譜 67
圖4- 15不同比例PI-Clay奈米複合材料在頻率100 kHz時的介電損失圖譜 68
圖4- 16不同比例PI-Clay奈米複合材料在頻率1 MHz時的介電損失圖譜 68
圖4- 17 含不同MMT之PI-Clay奈米複合材料在頻率1 kHz時的介電常數圖譜 69
圖4- 18含不同MMT之PI-Clay奈米複合材料在頻率1 MHz時的介電常數圖譜 69
圖4- 19含不同MMT之PI-Clay奈米複合材料在頻率1 kHz時的介電損失圖譜 70
圖4- 20 含不同MMT之PI-Clay奈米複合材料在頻率1 MHz時的介電損失圖譜 70
圖4- 21 Pristine Clay (PK802和PK805)及利用雙改質劑有機化Clay的XRD圖譜 73
圖4- 22 (a) PI-3wt%Clay(PK802) (DAETPB-ODA) (×10k), (b) PI-3wt%Clay(PK802) (×50k), (c) PI-3wt%Clay(PK805) (DAETPB-ODA) (×10k),(d) PI-3wt%Clay(PK805) (×50k) 之TEM圖 75
圖4- 23 Pure PI及含5wt%不同有機化Clay之PI-Clay奈米複合材料的DMA圖譜 79
圖4- 24 PI-Clay奈米複合材料在頻率1 kHz時的介電常數圖譜 82
圖4- 25 PI-Clay奈米複合材料在頻率1MHz時的介電常數圖譜 82
圖4- 26 PI-Clay奈米複合材料在頻率1 kHz時的介電損失圖譜 83
圖4- 27 PI-Clay奈米複合材料在頻率1 MHz時的介電損失圖譜 83
圖4- 28 PI-Clay(PK805和PK802)奈米複材在溫度35℃時的介電常數圖譜 84
圖4- 29 PI-Clay(PK805和PK802)奈米複材在溫度35℃時的介電損失圖譜 84
圖4- 30聚醯亞胺單體結構 (a)含氟之二酸胺和二酸酐 (b)不含氟之二酸胺和二酸酐 86
圖4- 31 Pristine Clay、利用雙改質有機化Clay和PI-Clay(3wt% and 5wt%)奈米複材的XRD圖譜 88
圖4- 32(a) (6FBpA-6FDA)- 3wt%MMT, (b) (ODA-BASS)- 3wt%MMT, and (c) (6FBpA-6FDA)- 3wt%MMT, (c) (6FBpA-6FDA)- 3wt%MMT, (d) (ODA-BASS)- 3wt%MMT 90
圖4- 33有機化Clay合成之F-PI-Clay與non-F-PI-Clay奈米複合材料的Moisture absorption圖譜 95
圖4- 34不同比例PI(6FBpA-6FDA)-Clay奈米複合材料在頻率1MHz下的介電常數 98
圖4- 35不同比例PI(ODA-BSAA)-Clay奈米複合材料在頻率1MHz下的介電常數 98
圖4- 36不同比例PI(6FBpA-6FDA)-Clay奈米複合材料在頻率1MHz下的介電損失 99
圖4- 37不同比例PI(ODA-BSAA)-Clay奈米複合材料在頻率1MHz下的介電損失 99
圖4- 38 PI(6FBpA-6FDA)-5 wt%Clay奈米複合材料在不同頻率下的介電常數圖譜 100
圖4- 39 PI(ODA-BSAA)-5 wt%Clay奈米複合材料在不同頻率下的介電常數圖譜 100



表目錄
表2- 1加成型及縮合型聚亞醯胺優缺點比較 17
表2- 2一般常見的雙酐與雙胺的單體 18
表2- 3不同聚醯亞胺結構其極化能力對介電常數之影響 22
表2- 4不同聚醯亞胺結構其自由體積對介電常數之影響 23
表2- 5聚醯亞胺結構中氟基含量對介電常數之影響 23
表3- 1不同莫耳比例F-PI-Clay奈米複合材料製備添加物用量表 45
表3- 2不同莫耳比例non-F-PI-Clay奈米複合材料製備添加物用量表 46
表4- 1 Pristine Clay、有機化Clay及PI-Clay(DAETPB-ODA)奈米複合材料之XRD圖譜的數據分析 …………………………………………51
表4- 2不同有機化Clay合成之PI-Clay奈米複合材料之熱分析數據 58
表4- 3不同有機化Clay合成之PI-Clay奈米複合材料的DMA圖譜之分析數據 60
表4- 4不同有機化Clay合成之PI-Clay奈米複合材料的Moisture absorption圖譜之分析數據 62
表4- 5 Pristine clay和有機化clay之XRD圖譜的數據分析 73
表4- 6不同有機化Clay合成之PI-Clay奈米複合材料之熱分析數據 77
表4- 7不同有機化Clay合成之PI-Clay奈米複合材料的DMA圖譜之分析數據 79
表4- 8為不同有機化Clay 合成之PI-Clay奈米複合材料的Moisture absorption(%)圖譜之分析數據。 80
表4- 9有機化Clay合成之PI-Clay奈米複合材料之熱分析數據 92
表4- 10有機化Clay合成之PI-Clay奈米複合材料的DMA圖譜之分析數據 94
[1] Kojima, Yoshitsugu; Usuki, Arimitsu; Kawasumi, Masaya; Okada, Akane; Kurauchi, Toshio; Kamigaito, Osami, “One-pot synthesis of nylon 6-clay hybrid”, J. Appl. Polymer. Sci. Part A:Polym.Chem., 31, 1755 (1993)
[2] Usuki, Arimitsu; Kojima, Yoshitsugu; Kawasumi, Masaya; Okada, Akane; Fukushima, Yoshiaki; Kurauchi, Toshio; Kamigaito, Osami, “Synthesis of nylon 6-clay hybrid”, J.Materials Res., 8, 1179 (1993)
[3] A. Usuki, et al. “Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid”, J. Appl. Polymer. Sci. 55, 119 (1995)
[4] A. Usuki, et al. Polym. Prepr. Japan. 14, 1361 (1993)
[5] A. Usuki, et al. Polym. Prepr. 31, 651 (1993)
[6] H.L. Tyan, Y.C. Liu, K.H. Wei, “Thermally and Mechanically Enhanced Clay/Polyimide Nanocomposite via Reactive Organoclay”, Chem. Mater. 11, 1942 (1999)
[7] M.O. Abdalla, D. Dean, S. Campbell, “Viscoelastic and mechanical properties of thermoset PMR-type polyimide–clay nanocomposites”, Polymer 43, 5887 (2002)
[8] T. Agag, T. Koga, T. Takeichi, “Studies on thermal and mechanical properties of polyimide–clay nanocomposites”, Polymer 42, 3399 (2001)
[9] H.L. Tyan, K.H. Wei, T.E. Hsieh, “Mechanical properties of clay-polyimide (BTDA-ODA) nanocomposites via ODA-modified organoclay”, J. Polym. Sci. :Part B: Polym. Phys. 38, 2873 (2000)
[10] X.L. Xie, B.G. Li, Z.R. Pan, R.K.Y. Li, S.C. Tjong, “Effect of talc/MMA in situ polymerization on mechanical properties of PVC-matrix composites”, J. Appl. Polym. Sci. 80, 2105 (2001)
[11] N. Hasegawa, H. Okamoto, M. Kawasumi, A. Usuki, “Preparation and mechanical properties of polystyrene-clay hybrids”, J. Appl. Polym. Sci. 74, 3359 (1999)
[12] 蔡宗燕, 化工資訊, 2月刊(1998)
[13] H.L. Tyan, Y.C. Liu, K.H. Wei, “Thermally and Mechanically Enhanced Clay/Polyimide Nanocomposite via Reactive Organoclay” Chem. Mater. 11, 1942 (1999)
[14] T. Lan, P. D. Kaviratna, T. J. Pinnavaia, “On the Nature of Polyimide-Clay Hybrid Composites”, Chem. Mater. 6, 573 (1994)
[15] J. W. Gilman, C. L. Jackson, A. B. Morgan, R. Jr. Hayyis, E. Manias, E. P. Giannelis, M. Wuthenow, D. Hilton, S. H. Phillips, “Flammability Properties of Polymer-Layered-Silicate Nanocomposites. Polypropylene and Polystyrene Nanocomposites”, Chem. Mater. 12, 1866 (2000)
[16] R. Georga Brubaker, Corrosion Chemistry 39, 108 (1979)
[17] Y. Wang, N. Herron, “Syntheses and characterization of nanometer-sized semiconductor clusters”, Research on Chemical Intermediates 15, 17 (1991)
[18] F. E. Karasz, P. N. Prasad, Y. Pang, US Patent 5130362 July (1992)
[19] S. P. Armes, S. Gottesfeld, J. G. Berry, F. Garzon, S. F. Agnew, “Conducting polymer-colloidal silica composites”, Polymer, 32(13), 2325 (1991)
[20] 陳啟倫 碩士論文 “聚鄰-胺基苯乙基醚/黏土奈米複合材料之製備與性質研究”,中華民國九十年五月
[21] C. G. Gebelein, Biometic. Polymer, Plenum Press, New York, (1990)
[22]財團法人國家實驗研究院科技政策研究與資訊中心,2003-2005 All Reserved
[23] 林鴻明, 化工科技與商情, 5 (2002)
[24] A. Akelah, and A. Moet, “Cross-linked coatings by co-reaction of isocyanate-methoxymethyl melamine systems”, J. Appl. Polymer. Sci., 55, 153 (1994)
[25] W. T. Reichle, S. Y. Kong, and D. S. Everhart, “The nature of the thermal decomposition of a catalytically active anionic clay mineral”, J. Catalyst., 101, 352 (1986)
[26] C. Depege, F.E. Elmetoui, C. Forano, A.D. Roy, “Polymerization of Silicates in Layered Double Hydroxides”, Chem. Mater., 8, 952 (1996)
[27] S. Bonnet, C. Forano, A. D. Roy, J. P. Besse. “Synthesis of Hybrid Organo-Mineral Materials: Anionic Tetraphenylporphyrins in Layered Double Hydroxides”, Chem. Mater., 8, 1962 (1996)
[28] Jui-Ming Yeh, Chi-Fa Hsieh, Jenn-Huey Jaw, Tai-Hung Kuo, Hsi-Ya Huang, Ching-Lung Lin, Min-Yu Hsu, J. Appl. Polymer. Sci. “Organo-soluble polyimde (ODA-BSAA)/montmorillonite nanocomposite materials prepared by solution dispersion technique”. 95, 1082 (2005)
[29] Jui-Ming Yeh, Shir-Joe Liou, Hsin-Jung Lu, Hsi-Ya Huang. “Enhancement of corrosion protection effect of poly(styrene-co-acrylonitrile) by the incorporation of nanolayers of montmorillonite clay into copolymer matrix”. J. Appl. Polymer. Sci., 92, 2269 (2004)
[30] Jui-Ming Yeh, Shir-Joe Liou, Ching-Yi Lin, Chiao-Yu Cheng, Ya-Wen Chang, “Anticorrosively Enhanced PMMA-Clay Nanocomposite Materials with Quaternary Alkylphosphonium Salt as an Intercalating Agent”, Chem. Mater., 14, 154 (2002)
[31] Hisham A. Essawy, Ahmed S. Badran, Ahmed M. Youssef, Abou El-Fettouh A. Abd El-Hakim, “Polystyrene/Montmorillonite Nanocomposites Prepared by In Situ Intercalative Polymerization: Influence of the Surfactant Type”, Macromol. Chem. Phys., 205, 2366 (2004)
[32] Zhongfu Zhao, Tao Tang, Yongxin Qin, and Baotong Huang, “Relationship between the Continually Expanded Interlayer Distance of Layered Silicates and Excess Intercalation of Cationic Surfactants”, Langmuir, 19, 9260 (2003)
[33] P.E.Cassidy,Thermally Stable Polymers:Synthenses and Properties,Marcel Dekker,94 (1980)
[34] M. Bergain, A. Combet, P. Grosjean, Brit Patent Spec 1, 190, 788 (1970)
[35]Z.D.Cheng, F.E.Arnold, Jr.A.Zhang, S.L.C.Hsu, and F.W.Harris, “Organosoluble, segmented rigid-rod polyimide film. 1. Structure formation”, Macromolecules, 24, 5856 (1991)
[36] S. A. Zahir, A. Renner, US Patent 4, 100, 140, (1978)
[37] 林金雀, 化工資訊, 8 (1999)
[38] H. H. Huang, G. L. Willkes, Polymer, 30, 2001 (1989)
[39] K.G. Malay, K.L. Mittal, “Polyimides: fundamentals and application”, New York: Marcel Dekker (1996)
[40] T. Kaneda, M. Horio, T. Katsura, H. Makino, and K. Nakagawa, “High-strength-high-modulus polyimide fibers I. One-step synthesis of spinnable polyimides”, J. Appl.Polym. Sci., 32, 3133 (1986)
[41] M. Oba, “Effect of curing accelerators on thermal imidization of polyamic acids at low temperature”, J. Polym. Sci., A, Polym. Chem., 34, 651 (1996)
[42] T. T. Serafini. et al, “Thermally stable polyimides from solutions of monomeric reactants”, J. Appl. Polym. Sci., 16, 905 (1972)
[43] Y. Kong, H. Du, J. Yang, D. Shi, Y. Wang, Y. Zhang, W. Xin, “Ceramic-reinforced polymers and polymer-modified ceramics”, Polym. Eng. Sci., 36, 2905 (1996)
[44] J. O. Simpson, A. K. St.Clair, “Fundamental insight on developing low dielectric constant polyimides”, Thin Solid Films, 308-309, 480 (1997)
[45] C. Huang, R. E. Parton, E. Matijevic, “Low-Zeta-Potential Analytic Solution for the Electrophoretic Mobility of a Spherical Colloidal Particle in an Oscillating Electric Field”, J. Colloid and Interface Science., 160, 275 (1993)
[46] S. Kripotoua, P. Pissisa, V.A. Bershteinb, P. Syselc, R. Hobzova , “Dielectric studies of molecular mobility in hybrid polyimide–poly(dimethylsiloxane) networks”, Polymer 44 2781 (2003)
[47] J. Zhu, A.B. Morgan, F.J. Lamelas, �nC.A. Wilkie, “Fire Properties of Polystyrene-Clay Nanocomposites”, Chem. Mater. 13 3774 (2001)
[48] H.L. Tyan, C.M. Leu, K.H. Wei, “Effect of Reactivity of Organics-Modified Montmorillonite on the Thermal and Mechanical Properties of Montmorillonite/Polyimide Nanocomposites”, Chem. Mater. 13 222 (2001)
[49] Z.M. Liang, J. Yin, H.J. Xu, “Polyimide/montmorillonite nanocomposites based on thermally stable, rigid-rod aromatic amine modifiers”, Polymer 44 1391 (2003)
[50] J.C. Huang, Z.K. Zhu, J. Yin, X.F. Qian, Y.Y. Sun, “Poly(etherimide)/montmorillonite nanocomposites prepared by melt intercalation: morphology, solvent resistance properties and thermal properties”, Polymer 42 873 (2001)
[51] G. Chen, S. Liu, S. Chen, Z. Qi, “FTIR Spectra, Thermal Properties, and Dispersibility of a Polystyrene/Montmorillonite Nanocomposite”, Macromol. Chem. Phys. 202 1189 (2001)
[52] H.L. Tyan, C.Y. Wu, K.H. Wei, “Effect of montmorillonite on thermal and moisture absorption properties of polyimide of different chemical structures”, J. Appl. Polym. Sci. 81 1742 (2001)
[53] R. Magaraphan, W. Lilayuthalert, A. Sirivat, J.W. Schwank, “Preparation, structure, properties and thermal behavior of rigid-rod polyimide/montmorillonite nanocomposites”, Composites Sci. Tech. 61 1253 (2001)
[54] S. Wang, Y. Hu, L. Song, Z. Wang, Z. Chen, W. Fan, “Preparation and thermal properties of ABS/montmorillonite nanocomposite”, Polym. Degrad. Stab. 77 423 (2002)
[55] J.M. Yeh, S.J. Liou, C.Y. Lai, P.C. Wu, “Enhancement of Corrosion Protection Effect in Polyaniline via the Formation of Polyaniline-Clay Nanocomposite Materials”, Chem. Mater. 13 1131 (2001)
[56] J.M. Yeh, C.L. Chen, Y.C. Chen, C.Y. Ma, K.R. Lee, Y. Wei, S. Li, “Enhancement
of corrosion protection effect of poly(o-ethoxyaniline) via the formation of
poly(o-ethoxyaniline)–clay nanocomposite materials”, Polymer 43 2729 (2002)
[57] J.M. Yeh, C.P. Chin, S. Chang, “Enhanced corrosion protection coatings prepared from soluble electronically conductive polypyrrole-clay nanocomposite materials”, J. Appl. Polym. Sci. 88 3264 (2003)
[58] J.M. Yeh, C.P. Chin, “Structure and properties of poly(o-methoxyaniline)-clay nanocomposite materials”, J. Appl. Polym. Sci. 88 1072 (2003)
[59] G. Chen, K. Yao, J. Zhao, “Montmorillonite clay/poly(methyl methacrylate) hybrid resin and its barrier property to the plasticizer within poly(vinyl chloride) composite”, J. Appl. Polym. Sci. 73 425 (1999)
[60] J. Zhu, P. Start, K.A. Mauritz, C.A. Wilkie, “Thermal stability and flame retardancy of poly(methyl methacrylate)-clay nanocomposites”, Polym. Degra. Stab. 77 253 (2002)
[61] Y. Xu, W.J. Brittain, C. Xue, R.K. Eby, “Effect of clay type on morphology and thermal stability of PMMA–clay nanocomposites prepared by heterocoagulation method”, Polymer 45 3735 (2004)
[62] R.A. Vaia, S. Vasudevan, W. Kawiec, L.G. Scanlon, E.P. Giannelis, “New
polymer electrolyte nanocomposites: Melt intercalation of poly(ethylene oxide) in
mica-type silicates”, Adv. Mater. 7 154 (1995)
[63] J.O. Simpson, A.K. St.Clair, Thin Solid Films 308 480 (1997)
[64] M.H. Tsi, W.T. Whang, “Low dielectric polyimide/poly(silsesquioxane)-like nanocomposite material”, Polymer 42 4197 (2001)
[65] S. Ukishima, M. Iijima, M. Sato, Y. Takahashi, E. Fukada, “Heat resistant polyimide films with low dielectric constant by vapor deposition polymerization”, Thin Solid Films 308 475 (1997)
[66] T. Liang, Y. Makita, S. Kimura, “Effect of film thickness on the electrical properties of polyimide thin films”, Polymer 42 4867 (2001)
[67] P.S. Alegaonkar, A.B. Mandale, S.R. Sainkar, V.N. Bhoraskar, “Refractive index and dielectric constant of the boron and fluorine diffused polyimide”, Nuclear Instruments and Methods in Physics Research B 194 281 (2002)
[68] J.R. Lee, F.L. Jin, S.J. Park, J.M. Park, “Study of new fluorine-containing epoxy resin for low dielectric constant”, Surf. Coat. Tech. 180 650 (2004)
[69] A. Kanapitsas, P. Pissis, A.G. Estrella, “Molecular mobility in polyurethane/styrene-acrylonitrile blends studied by dielectric techniques”, Euro. Polym. J. 35 923 (1999)
[70] L.Y. Jiang, C.M. Leu, K.H. Wei, “Layered Silicates/Fluorinated Polyimide
Nanocomposites for Advanced Dielectric Materials Applications”, Adv. Mater. 14
426 (2002)
[71] S.H. Anastasiadis, K. Karatasos, G. Vlachos, E. Manias, E.P. Giannelis, “Nanoscopic-Confinement Effects on Local Dynamics”, Phys. Rev. Lett. 84 915 (2000)
[72] A. Gu, S.W. Kuo, F.C. Chang, “Syntheses and properties of PI/clay hybrids”, J.
Appl. Polym. Sci. 79 1902 (2001)
[73] R.D. Davis, J.W. Gilman, A.J. Bur, M. McBrearty, P.R. Start, Y.H. Lee, “In-line monitoring of dielectric and fluorescence spectroscopy during polymer/filler compounding”, Plastics, Rubber and Composites, 33 5 (2004)
[74] C.T. Yen, W.C. Chen, D.J. Liaw, H.Y. Lu. “Synthesis and properties of new
polyimide–silica hybrid films through both intrachain and interchain bonding”,
Polymer 44 7079 (2003)
[75] A.B. Morgan, J.W. Gilman. “Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: A comparative study”, J. Appl. Polym. Sci. 87 1329 (2003)
[76] H.W. Wang, K.C. Chang, J.M. Yeh, S.J. Liou, “Synthesis and dielectric property
of polystyrene-clay nanocomposite materials”, J. Appl. Polym. Sci. 91 1368 (2004)
[77] H.W. Wang, K.C. Chang, H.C. Chu, S.J. Liou, J.M. Yeh, “Significant decreased
dielectric constant and loss of polystyrene-clay nanocomposite materials by using
long-chain intercalation agent”, J. Appl. Polym. Sci. 92 2402 (2004)
[78] A.K. St.Clair, T.L. St. Clair, W.P. Winfree, US Patent No. 5338826, 1994.
[79] Y.W. Chen, W.C. Wang, W.H. Yu, Z.L. Yuan, E.T. Kang, K.G. Neoh, B. Krauter,
“Nanoporous Low- Polyimide Films via Poly(amic acid)s with Grafted
Poly(ethylene glycol) Side Chains from a Reversible Addition-Fragmentation
Chain-Transfer-Mediated Process”, Adv. Funct. Mater.14 471 (2004)
[80] Y. Charlier, J.L. Hedrick, T.P. Russell. “Polyimide foams prepared from
homopolymer/copolymer mixtures”, Polymer, 36 4529 (1995)
[81] J.H. Chang, D.K. Park, K.J. Ihn. “Polyimide nanocomposite with a
hexadecylamine clay: Synthesis and characterization”, J. Appl. Polym. Sci., 84 2294
(2002)
[82] H.W. Wang, R.X. Dong, H.C. Chu, K.C. Chang, W.C. Lee, “Improvements on the synthesis and properties of fluorinated polyimide–clay nanocomposites by using double-swelling agents”, Mater. Chem. Phys., 94 42 (2005)
[83] T.Y. Tsai, C.H. Li, C.H. Chang, W.H. Cheng, C.L. Hwang, R.J. Wu, “Preparation
of Exfoliated Polyester/Clay Nanocomposites”, Adv. Mater.17 1769 (2005)
[84] H.W. Wang, K.C. Chang, H.C. Chu, “Effect of Clay on the Dielectric Properties
of Poly(styrene-co-acrylonitrile)-Clay Nanocomposites”, Polymer International, 54
114 (2005)
[85] Z. Ahmad, J.E. Mark, “Polyimide-Ceramic Hybrid Composites by the Sol-Gel
Route”, Chem. Mater. 13 3320 (2001)
[86] D.Wilson, Polyimide, Blackie, New York, 129 (1990)
[87] 陳世學,“含有線性側鏈的芳香族二胺及其衍生之聚醯亞胺的合成與性質
研究”, 中原大學碩士論文, 七月, 2001年
[88] 陳鼎龍,”可溶性及可交聯性含氟聚醯亞胺之合成與性質之研究”,中原大
學碩士論文, 七月, 2001年
[89] 劉志宏,“低介電常數材料製備與蝕刻製程之研究”, 中原大學碩士論文,
七月, 2000年
[90]G..Maier, “Low dielectric constant polymers for microelectronics”, Progress in
Polymer Science, 26 3 (2001)
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top