跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/24 11:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王耀琳
研究生(外文):Yao-Lin Wang
論文名稱:PEO/LiClO4/mesoporoussilica複合高分子電解質之製備及性質研究
論文名稱(外文):Preparation and characterization of PEO/LiClO4/mesoporous silica composite polymer electrolytes
指導教授:陳玉惠陳玉惠引用關係
指導教授(外文):Yui-Whei Chen
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:81
中文關鍵詞:中孔洞二氧化矽離子導電度鋰離子傳導係數非結晶性高分子電解質
外文關鍵詞:mesoporous silicaamorphous polymer electrolytelithium ion transference numberionic conductivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:406
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用高分子量之Poly(ethylene oxide)(PEO)、適當濃度之LiClO4與低添加量之自製中孔洞二氧化矽,製備出一完全非結晶性之PEO/LiClO4/mesoporous silica複合高分子電解質系統。利用差式掃描卡計(DSC)、X光繞射分析儀(XRD)、傅立葉紅外線光譜儀(FT-IR)、固態核磁共振儀(7Li solid-state NMR)、交流阻抗分析儀(AC-Impedence Analyzer)、掃描電子顯微鏡(SEM)、能量散射光譜儀(EDS)及電化學分析儀(Electrochemical System)探討其熱性質、結晶性、各成份間作用力、離子解離情形、鋰離子的環境、離子導電度、活化能、表面形態、分散情形與鋰離子傳導係數。
結果顯示,當EO/Li=6時,O6高分子電解質為一非結晶性之高分子電解質,其室溫導電度可達2.37×10-5S/cm。當2wt.%之中孔洞二氧化矽加入後,可均勻的分散在O6高分子電解質系統中,所製備之複合高分子電解質(O6A2)並沒有明顯的相分離與自聚(aggregation)現象,其室溫離子導電度高達7.09×10-5S/cm,接近實用值的範圍(10-4S/cm),且鋰離子傳導係數(t+)值亦高達0.67,此結果均比目前所報導之PEO/LiClO4/SiO2電解質系統來得高。可歸因於(1)在路易士酸鹼作用力下,中孔洞二氧化矽上的氧原子會與鋰離子產生作用力,與高分子產生競爭效應,減弱鋰離子與高分子間的作用力,增加高分子的鏈節運動,並在中孔洞二氧化矽表面形成新的傳導途徑;(2)中孔洞二氧化矽表面之氫氧基亦會與高分子及陰離子產生作用,抑制高分子的再結晶與離子的再結合,增加鋰離子的移動性。
In this study, a series of totally amorphous PEO/LiClO4/mesoporous silica nanocomposite polymer electrolytes were prepared with high molecule weight polyethylene oxide, high concentration lithium perchlorate and low content of a homemade mesoporous silica. The SEM/EDS images of the nanocomposite polymer electrolytes indicated that 2wt.% of the mesoporous silica was well dispersed in the PEO polymer electrolyte matrix. The interactions in the system and possible conduction mechanism were studied by DSC, XRD, FT-IR, and 7Li-NMR analysis. It was found that conductivity was significantly improved by the addition of the as-prepared mesoporous silica. A maximum ambient conductivity value of 7.09×10-5 S/cm was obtained for the nanocomposite polymer electrolyte O6A2. The AC-DC polarization results showed that the lithium ion transference number(t+) of O6A2 was about 0.67, which is the highest value reported in PEO/LiClO4/SiO2 system up to now. The high ionic conductivity and lithium ion transference number suggested that it can be used as a potential candidate of the electrolyte material for lithium polymer batteries.
目錄
謝誌 I
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
第一章 緒論 1
第二章 文獻回顧 7
2.1高分子鋰二次電池的簡介 7
2.2高分子電解質之特性 8
2.3高分子電解質的發展 10
2.4高分子電解質的種類 12
2.4.1固態高分子電解質 12
2.4.2膠態高分子電解質 16
2.4.3複合高分子電解質 18

2.5離子傳導性質 21
2.5.1固態高分子電解質之傳導機制 21
2.5.2膠態高分子電解質之傳導機制 22
2.5.3複合高分子電解質之傳導機制 22
2-6溫度效應對高分子電解質導電度之影響 24
2.7氣凝膠之簡介 27
2.7.1氣凝膠之特性 27
2.7.2氣凝膠之應用(,,,) 28
2-8研究動機 30
第三章 研究方法 31
3.1實驗藥品 31
3.2實驗設備 32
3.3複合高分子電解質之製備 34
3.4 PEO複合高分子電解質性質之研究 36
3.5導電度測量系統的建立 37
第四章 結果與討論 40
4.1高分子電解質表面形態與氣凝膠分散性的探討 40
4.2高分子電解質之熱性質 43
4.3高分子電解質之結晶性 48
4.4高分子電解質各成分間作用力與離子解離情形 50
4.5鋰離子環境之分析 57
4.6離子導電度之測試 65
4.6.1溫度對導電度的關係 68
4.7鋰離子傳導係數之測試 72
第五章 結論 75
第六章 參考文獻 76
圖目錄
Fig. 1-1電池的六大需求目標 1
Fig. 1-2不同二次電池能量密度之比較 5
Fig. 1-3奈米高分子複合材料之特性 6
Fig. 2-1 高分子鋰二次電池內部構造示意圖 7
Fig. 2-2 (a)PEO螺旋晶體結構(b)鈉離子於螺旋結構內移動 11
Fig. 2-3高分子電解質之演變圖 11
Fig. 2-4 (PEO)n-LiX電解質示意圖 13
Fig. 2-5分枝型與梳狀高分子結構示意圖 15
Fig. 2-6網狀高分子結構示意圖 15
Fig. 2-7單離子傳導體結構示意圖 15
Fig. 2-8鋰離子在固態高分子電解質的運動模型 21
Fig. 2-9加入塑化劑後高分子電解質傳導離子的運動模型 22
Fig. 2-10加入無機填充物後高分子電解質傳導離子的運動模型 23
Fig. 2-11 PEO/LiClO4系統之相圖 26
Fig. 2-12 PEO/LiClO4導電度與溫度倒數之關係圖 26
Fig. 2-13 Structure and application of aerogel 28
Fig. 3-1本論文之研究架構 33
Fig. 3-2複合高分子電解質製作流程 34
Fig. 3-3導電度測量裝置 38
Fig. 4-1 SEM micrographs and the mapping of Si for (a)O6A1, (b)O6A2 composite polymer electrolyte. 41
Fig. 4-2 SEM micrographs and the mapping of Si for (a)O6A4, (b)O6A8 composite polymer electrolyte. 42
Fig. 4-3 DSC curves of Ox series 45
Fig. 4-4 DSC curves of O6Ax series 46
Fig. 4-5 Tg of Ox and O6Ax series. 47
Fig. 4-6 TGA thermogram of O6Ax series. 47
Fig. 4-7 Wide-angle X-ray diffraction patterns of Ox series 49
Fig. 4-9 FT-IR spectra of O6Ax series 52
Fig. 4-10 FT-IR C-O-C stretching spectra of O6Ax series 53
Fig. 4-11 FT-IR peak fitting of ClO4- absorbance for Ox series 54
Fig. 4-12 FT-IR peak fitting of ClO4- absorbance for O6Ax series 55
Fig. 4-13 Fraction of free ClO4- of Ox and O6Ax series. 56
Fig. 4-14 7Li MAS NMR spectra of Ox series 59
Fig. 4-15 7Li MAS NMR peak fitting of Ox series 60
Fig. 4-16 7Li MAS NMR spectra of O6Ax series 61
Fig. 4-17 7Li MAS NMR peak fitting of O6Ax series 62
Fig. 4-18 Conductive model of PEO/LiClO4/aerogel composite polymer electrolyte 64
Fig. 4-19 Ionic conductivity of different EO/Li ratio 66
Fig. 4-20 Ionic conductivity of O6 with different aerogel content 67
Fig. 4-21 Arrhenius plots of Ox series 69
Fig. 4-22 Arrhenius plots of O6Ax series 70
Fig. 4-23 Schematic design of coin cell 73
Fig. 4-24 Current response of Li/O6Ax/Li cell 74
表目錄
Table 1-1常見的二次電池特性與應用領域之比較 3
Table 2-1常見高分子電解質的導電度 13
Table 2-2改質後高分子電解質的性質 16
Table 2-3一般常見之塑化劑 17
Table 2-4常見膠態高分子電解質之室溫導電度 17
Table 2-5複合高分子電解質性質之比較 20
Table 2-6 氣凝膠之性質、特色與應用 29
Table 2-7 Properties between difference mesoporous silica 30
Table 4-1 Thermal properties of Ox series 45
Table 4-2 Tg of O6Ax series 46
Table 4-3 Wave number and area ratio of FT-IR ClO4- peak fitting for Ox 56
Table 4-4 Wave number and area ratio of FT-IR ClO4- peak fitting for O6Ax 56
Table 4-5 Chemical shift、area ratio and half width of 7Li-NMR peak fitting for Ox series 63
Table 4-6 Chemical shift、area ratio and half width of 7Li-NMR peak fitting for O6Ax series 63
Table 4-7 Ionic conductivity of Ox series at 30℃ 66
Table 4-8 Ionic conductivity of O6Ax series 67
Table 4-9 Activation energy of Ox series 69
Table 4-10 Activation energy of O6Ax series 70
Table 4-11 Activation energy of various electrolyte systems 71
Table 4-12 R0, RS, I0, IS, and t+ of O6Ax series 74
1.詹益松, 工業材料, 2001, 171, 158.
2.劉如熹, CHEMISTRY(The Chinese Chem. Soc., Taipei), 1999, 57, 149.
3.陳美文, 工研院化工所, “二次電池材料專題調查報告” 87年.
4.吳齊昇, CHMISTRY(The Chinese Chem. Soc., Taipei), 1999, 57, 161.
5.M. P. Florian, F. V. G. Wilfred, J. Chem. Phys. 1995, 103, 4745.
6.F. Croce, B. Scrosati, J. power sources, 1993, 43, 9.
7.M. Watanabe, N. Ogata, Br. Polym. J., 1988, 20, 181.
8.D. F. Shriver, B. L. Papke, M. A. Ratner, R. Dupon, T. Wang, M. Brodwin, Solid State Ionic, 1981, 5, 83.
9.楊家諭, 工業材料, 1998, 122, 126.
10.M. A. Ratner, D. F. Shriver, Chem. Rev., 1988, 88, 109.
11.D. E. Fenton, J. M. Parker, P. V. Wright, Polymer, 1973, 14, 589.
12.P. V. Wright, Br. Polym. J., 1975, 7, 319.
13.G. Feullade, P. Perche, J. Appl. Electrochem., 1975, 5, 63.
14.M. B. Armand, “Second International Meeting on Solid Electrolytes Extended Abstracts” , St. Andrews Ecosse, 1978.
15.M. B. Armand, “Fast Ion Transport in Solids” , P. Vashishta, Editor, North Holland, New York, 1979.
16.R. Dupon, B. L. Papke, M. A. Ratner, D. H. Whitmore, D. F. Shriver, J. Am. Chem. Soc., 1982, 104, 6247.
17.J. E. Weston, B. C. H. Steele, Solid State Ionics, 1982, 7, 75.
18.C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, P. Rigaud, Solid State Ionics, 1983, 11, 91.
19.K. Murata, S. Izuchi, Y. Yoshihisa, Electrochim. Acta, 2000, 45, 1501.
20.F. Gray, In Solid Polymer Electrolytes, Fundamental and Technological Applications, VCH Publishers Inc., N. Y., 1991.
21.M. Armand, W. Gorecki, R. Andreani, B. Scrosati, Editor, proceedings in the second International Meeting on Polymer Electrolytes, Elseriver, N. Y., 1990, 91.
22.K. M. Abraham, “Application of Electroactive Polymers” , B. Scrosati, Editor, Chaptan �t Hall, London, 1993, 3.
23.C. W. Walker Jr., M. Salomon, J. Electrochem. Soc., 1993, 140, 3409.
24.I. I. Olsen, R. Koksbang, E. Skou, Electrochim Acta, 1995, 40, 1701.
25.G. Persen, P. Jacobsson, L. M. Torell, Electrochim Acta, 1992, 37, 1495.
26.鄭宗田, 張憲彰, 溫添進, “固態高分子電解質之研發與應用” , 化學, 84年, 35, 359.
27.F. B. Dias, L. Plomp, J. B. J. Veldhuis, J. Power Sources, 2000, 88, 169.
28.Xiaoqing Z., David H. S., Macromolecules, 1994, 27, 4919.
29.L. Mathias, Solid State NMR of polymers, 1991.
30.M. Z. A. Munshi, “Technology assessment of lithium polymer electrolyte secondary batteries“ , handbook of solid state batteries and capacitors, Chap. 19, 393.
31.F. Yuan, H. Z. Chen, H. Y. Yang, H. Y. Li, M. Wang, Mater. Chem. Phys., 2005, 89, 390.
32.N. Kobyashi, M. Uchiyama, E. Tsuchida, Solid State Ionics, 1986, 17, 307.
33.E. Tsuchida, H. Ohno, N. Kobyashi, H. Ishizaka, Macromolecules, 1988, 21, 96.
34.D. Benraban, S. Sylla, F. Alloin, J. Y. Sanchez, M. Armand, Electrochim. Acta, 1995, 40, 2259.
35.S. W. Hu, S. B. Fang, Macromol. Rapid Commun., 1998, 19, 539.
36.Q. Shi, M. Yu, X. Zhou, Y. Yan, C. Wan, J. Power Sources, 2002, 103, 286.
37.C. G. Wua, M. I. Lua, H. J. Chuang, Polymer, 2005, 46, 5929.
38.J. D. Jeon, B. W. Cho, S. Y. Kwak, J. Power Sources, 2005, 143, 219.
39.M. Z. A. Munshi, “Technology assessment of lithium polymer electrolyte secondary batteries“ , handbook of solid state batteries and capacitors, Chap.19, 393.
40.F. B. Dias, Lambertus Plomp, Jakobert B. J. Veldhuis, J. Power Sources, 2000, 88, 169.
41.李桐進, 材料與社會, 81年, 66, 54.
42.L. Z. Fan, C. W. Nan., S. J. Zhao, Solid State Ionics 2003, 164, 81.
43.J. W. Kim, K. S. Ji, J. P. Lee, J. W. Park, J. Power Sources, 2003, 119/121, 415.
44.K. S. Ji, H. S. Moon, J. W. Kim, J. W. Park, J. Power Sources 2003, 117, 124.
45.M. A. K. L. Dissanayake, P. A. R. D. Jayathilaka, R. S. P. Bokalawala, I. Albinsson, B. E. Mellander, J. Power Sources, 2003, 119/121, 409.
46.M. Nookala, B. Kumar, S. Rodrigues, J. Power Sources, 2002, 111, 165.
47.X. M. Qian, N. Y. Gu, Z. L. Cheng, X. R. Yang, E. K. Wang, S. J. Dong, Electrochim. Acta, 2001, 46, 1829.
48.Y. Liu, J. Y. Lee, L. Hong, J. Appl. Polym. Sci., 2003, 89, 2815.
49.H. M. Xiong, X. Zhao, J. S. Chen, J. Phys. Chem. B, 2001, 105, 10169.
50.A. D’epifanio, F. S. Fiory, S. Licoccia, E. Traversa, B. Scrosati, F. Groce, J. Appl. Elctrochem., 2004, 34, 403
51.J. Y. Xi, X. Z. Tang, Chem. Phys. Lett., 2004, 393, 271.
52.L. Z. Fan, C. W. Nan, M. Li, Chem. Phys, Lett., 2003, 369, 698.
53.G. Sand´ı, K. A. Carrado, H. Joachin, W. Q. Lu, J. Prakash, J. Power Sources, 2003, 119/121, 492.
54.H. M. Kao, C. L. Chen, Angew. Chem. Int. Ed., 2004, 43, 980.
55.J. Y. Xi, X. Z. Tang, Chem. Phys. Lett., 2004, 400, 68.
56.L. M. Bronstein, E. Ashcraft, P. DeSanto, Jr., R. L. Karlinsey, J. W. Zwanziger, J. Phys. Chem. B, 2004, 108, 5851.
57.R. L. Karlinsey, L. M. Bronstein, J. W. Zwanziger, J. Phys. Chem. B, 2004, 108, 918.
58.J. Xi, X. Tang, Electrochim. Acta, 2005, 50, 5293.
59.L. M. Bronsteina, R. L. Karlinseya, B. Steinb, J. W. Zwanziger, Solid State Ionics, 2005, 176, 559.
60.H. M. Kao, S. W. Chao, P. C. Chang, Macromolecules, 2006, 39, 1029.
61.C. W. Nan, L. Fan, Y. Lin, Q. Cai, Phys. Rev. Lett., 2003, 91, 266104-1.
62.P. P. Chu, M. J. Reddy, H. M. Kao, Solid State Ionics, 2003, 156, 141.
63.H. M. Kao, Y. Y. Tsai, S. W. Chao, Solid State Ionics, 2005, 176, 1261.
64.Y. Tominaga, S. Igawa, S. Asai, M. Sumita, Electrochim. Acta, 2005, 50, 3949.
65.Y. Tominaga, S. Asai, M. Sumita, S. Panero, B. Scrosati, Electrochem. Solid-State Lett., 2005, 8, 22.
66.J. Y. Xi, X. P. Qiu, X. M. Ma, M. Z. Cui, J. Yang, X. Z. Tang, W. T. Zhu, L. Q. Chen, Solid State Ionics, 2005, 176, 1249.
67.M. J. Reddy, P. P. Chu, J. Power Sources, 2004, 135, 1.
68.Y. Tominaga, S. Asai, M. Sumita, S. Panero, B. Scrosati, J. Power Sources, 2005, 146, 402.
69.J. Xia, X. Qiua, W. Zhua, X. Tang, Microporous and Mesoporous Materials, 2006, 88, 1.
70.J. Xi, S. Miao, X. Tang, Macromolecules, 2004, 37, 8592.
71.J. Xi, Y. Bai, X. Qiu, W. Zhu, L. Chen, X. Tang, New J. Chem., 2005, 29, 1454.
72.F. Croce, L. Persi, B. Scrosati, J. Electrochem. Soc., 2000, 147, 1718.
73.S. H. Chung, Y. Wang, L. Persi, F. Croce, S. G. Greenbaum, B. Scrosati, E. Plichta, J. Power Sources, 2001, 97-98, 644.
74.P.A.R.D. Jayathilaka, M.A.K.L. Dissanayake, I. Albinsson, B. E. Mellander, Elctrochim. Acta, 2002, 47, 3257.
75.M. Marcinek, A. Bac, P. Lipka, A. Zalewska, G. Zukowska, R. Borkowska, W. Wieczorek, J. Phys. Chem. B, 2000, 104, 11088.
76.W. H. Meyer, Adv. Mater., 1998, 10, 439.
77.K. M. Abraham, M. Alamgir, Solid State Ionics, 1994, 70-71, 20.
78.F. Croce, L. Persi, B. Scrosati, F. Serraino Fiory, E. Plichta, M. A. Hendrickson, Electrochim. Acta, 2001, 46, 2457.
79.M. B. Armand, J. M. Chabagno, M. J. Duclot, P. Uashishta, J. N. Mundy, G. K. Shenoy, Editors, North Holland New York, 1979, 131.
80.R. Dupon, D. H. Whitmore, D. F. Shriver, J. Electrochem. Soc., 1981, 128, 715.
81.C. D. Robitaille, D. Fauteux, J. Electrochem. Soc., 1985, 133, 315.
82.E. I. Ko, Chemtech, 1993, 23, 31.
83.S. Suttiruengwong, Der Technischen Fakultät der Universität Erlangen-Nürnberg, DOKTOR-INGENIEUR, 2005.
84.Z. Deng, J. Wang, A. Wu, J. Shen, B. Zhou, J. Non-Cryst. Solids, 1998, 225, 101.
85.M. Schmidt, F. Schwertfeger, J. Non-Cryst. Solids, 1998, 225, 364.
86.F. Schwertfeger, D. Frank, M. Schmidt, J. Non-Cryst. Solids, 1998, 225, 24.
87.王天路, 郭德文, 化工資訊, 2002, 8, 66.
88.L.W. Hrubesh, J. Non-Cryst. Solids, 1998, 225, 335.
89.O. Bohnke, C. Rousselet, P. A. Gillet, C. Truche, J. Electrochem.
Soc., 1992, 139, 1862.
90.P. E. Stallworth, J. Li, S. G. Greenbaum, F. Croce, S. Slane, M.
Salomon, Electrochim. Acta, 1995, 40, 2137.
91.P. G. Bruce, C. A. Vincent, J. Electroanal. Chem., 1987, 225, 1.
92.J. Evans, C. A. Vincent, P. G. Bruce, Polymer, 1987, 28, 2324.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top