跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/09 09:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:俞懿珊
研究生(外文):Yi-Shan Yu
論文名稱:天然黏土之純化改質研究及其在環氧基板應用之性能探討
論文名稱(外文):Studies on the Purification and Modification of Natural Clays and Application of Novolac Cured Epoxy/Clay Nanocomposites
指導教授:蔡宗燕
指導教授(外文):Tsung-Yen Tsai
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:124
中文關鍵詞:環氧樹脂奈米複合材料黏土
外文關鍵詞:epoxynanocompositesclay
相關次數:
  • 被引用被引用:6
  • 點閱點閱:319
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
天然黏土是地球上一種重要的非金屬礦物,其蘊藏量豐富,分佈甚廣,而隨著時代之變遷,成為奈米級複合材料的重要原料之ㄧ,因而引發學術與業界針對黏土之組成、結構與性質的深入探討與研究。故本研究首先針對四支未知之天然黏土進行鈉化提純,並分別利用廣角X光繞射儀(WAXRD)初步確認純化的程度。此外藉由陽離子交換當量(Cationic Exchange Capacity,CEC) 、固態核磁共振光譜儀(Solid State NMR)、 感應耦合電漿質譜儀(Inductively Coupled Plasma-Mass Spectrometer, ICP-MS) 、熱重分析儀(TGA)及紅外線光譜儀(FT-IR)等檢測設備,逐一來鑑定出編號為CL87、88、114、120之天然黏土結構式。 再者,因環氧樹脂其應用之多元性現已成為構裝材料之重要基材。主要原因是因其具有良好的力學特性、介電性、黏結能力和優異的耐化學腐蝕性。但純環氧樹脂固化物的脆性大、韌性差。隨著現代科技之發展,對材料之性能要求越來越高,而為了克服環氧樹脂在尺寸安定性、吸水性與機械強度不足下,故本研究將天然黏土有機化改質後,再添加入環氧樹脂中,使其熱性質和機械性質提昇,並藉由廣角X光繞射儀(WAXRD)觀察有機化黏土在環氧樹脂中的分散情形,了解黏土分散型態與性能提升的相依性。此外,經由熱重分析儀(TGA)、動態機械分析儀(DMA)的檢測來了解複合材料的玻璃轉移溫度(Tg)、熱穩定性及熱裂解溫度(Td)。並以穿透式電子顯微鏡(TEM)觀察實際的分散型態。最後再從中挑選CL88經由PI/BEN雙改質劑改質後進行基板應用評估,可得較佳之銅箔剝離強度、尺寸安定性,與較低的吸水率,在構裝材料的應用上更跨進了一大步。
The natural clays belong to the nonmetal minerals with abundance and wide distribution. Recently, clays, as starting materials, are applied to the study of polymer/clay nanocomposites; with higher mechanical and thermal properties, and lower water absorption and coefficiency of thermal expansion. Therefore, over the past few decades, a considerable number of studies have been conducted on the structure, ability and composite of clay. In this study, we developed the purification and characterization of four types of unknown natural clays by ion exchange reactions and wide angle X-ray diffraction (WAXRD) , Fourier transform infrared spectroscopy (FT-IR), Cationic exchange capacity(CEC), Solid state nuclear magnetic resonance spectrometer (Solid State NMR) and Inductively coupled plasma mass spectrometer (ICP-MS), named as CL87, CL88, CL114 and CL120. In order to apply these new nanocomposites to printed circuit board, the purified clays were modified by organic compounds, followed by mixing with the monomer of novolac epoxy, and cured under certain circumstances. The bulk samples, novolac epoxy/ clay nanocomposites, were characterized by wide angle X-rays diffraction pattern (WAXRD), Thermogravimetric analysis (TGA), Dynamic mechanical analysis (DMA), and Transmission electron microscope (TEM). From the analytical data, the addition of bi-functional modified clays into the novolac epoxy performs the excellent dispersion and mechanical properties. The characterization of copper clad laminates (CCL), made by glass fiber embedded in novolac epoxy/ clay nanocomposites, has shown the better mechanical, thermal, and coherent properties; and less water uptake and coefficiency of thermal expansion compared with the previous works.
目錄
中文摘要..........................................I
英文摘要.........................................II
目錄............................................III
圖索引..........................................VI
表索引............................................IX

第一章 緒論.......................................1
1-1 黏土的概論....................................1
1-2 黏土種類及結構的介紹..........................2
1-2-1 黏土的種類..................................2
1-2-2 黏土的帶電性................................4
1-2-3 黏土的分離純化..............................5
1-2-4 離子交換理論................................6
1-2-5 黏土的其他特性..............................8
1-3 黏土的有機化改質.............................8
1-3-1有機化改質黏土...............................8
1-3-2改質劑的分類................................10
1-4黏土於高分子中之分散型態.....................11
1-5環氧樹脂....................................14
1-5-1環氧樹脂之合成特性與製備...................14
1-5-2環氧樹脂之硬化反應機構.....................16
1-5-3環氧樹脂之應用.............................18
1-6有機/無機奈米混成材料.......................21
1-6-1有機/無機奈米混成材料技術原理..............21
1-6-2有機/無機奈米混成材料之研究現況與應用......22
1-7銅箔基板簡介................................26
1-7-1銅箔基板製程 ...............................26
1-7-2銅箔基板的組成.............................32
1-8 研究動機與目的...........................34
第二章 實驗內容..................................35
2-1實驗藥品....................................35
2-2實驗儀器設備................................38
2-3實驗部份....................................42
2-3-1黏土之膨潤度測試方法.......................42
2-3-2黏土之純化步驟.............................43
2-3-3有機黏土之製備.............................45
2-3-4黏土陽離子交換當量(CEC)值測試方法..........47
2-3-5環氧樹脂奈米複合材料之製備.................47
2-3-6銅箔基板的製作過程.........................50
2-3-7銅箔基板性質測試方法.......................51
第三章 結果與討論................................54
3-1 天然黏土的結構鑑定與分析..................54
3-1-1天然黏土初步評估...........................55
3-1-2天然黏土之純化.............................55
3-1-3 X-射線繞射分析............................56
3-1-4固態核磁共振光譜分析.......................59
3-1-5感應耦合電漿質譜分析.......................65
3-1-6熱重分析...................................69
3-1-7紅外光譜分析 ...............................70
3-2有機黏土之鑑定.............................73
3-2-1 X-射線繞射分析............................73
3-2-2熱穩定性與插層量的探討.....................77
3-2-3改質後黏土清洗之鑑定.......................82
3-3環氧樹脂黏土奈米複合材料...................85
3-3-1有機黏土於環氧基材分散性探討...............85
3-3-2環氧基材熱性質分析.........................92
3-3-3反應性探討................................101
3-3-1-1改質劑種類探討..........................101
3-3-1-2改質劑插層量探討........................101
3-3-1-3 Td或Oh取代探討.........................101
3-3-1-4 CEC值不同探討..........................102
3-4銅箔基板抗爆板分析........................104
第四章 結論與未來展望...........................108
第五章 參考文獻.................................111

圖索引
圖一 蒙脫土結構...................................4
圖二 黏土在高分子中的分散情形....................13
圖三 環氧樹脂之硬化反應機構 ..................... 16
圖四 銅箔基板製程................................31
圖五 黏土純化製備流程............................44
圖六 有機黏土製備流程............................46
圖七 環氧樹脂塊材製作方法........................49
圖八 CL87之X光繞射圖譜...........................57
圖九 CL88之X光繞射圖譜...........................57
圖十 CL114之X光繞射圖譜..........................58
圖十一 CL120之X光繞射圖譜........................58
圖十二 CL87之27Al Solid State NMR圖譜............61
圖十三 CL87之29Si Solid State NMR圖譜............61
圖十四 CL88之27Al Solid State NMR圖譜............62
圖十五 CL88之29Si Solid State NMR圖譜............62
圖十六 CL114之27Al Solid State NMR圖譜...........63
圖十七 CL114之29Si Solid State NMR圖譜...........63
圖十八 CL120之27Al Solid State NMR圖譜...........64
圖十九 CL120之29Si Solid State NMR圖譜...........64
圖二十 高純度黏土TGA圖譜.........................69
圖二十一 高純度黏土的紅外線光譜圖................72
圖二十二 單、雙改質劑有機黏土CL87之X光繞射圖譜...75
圖二十三 單、雙改質劑有機黏土CL88之X光繞射圖譜...75
圖二十四 單、雙改質劑有機黏土CL114之X光繞射圖譜..76
圖二十五 單、雙改質劑有機黏土CL120之X光繞射圖譜..76
圖二十六 CL87有機改質黏土TGA圖譜.................80
圖二十七 CL88有機改質黏土TGA圖譜.................80
圖二十八 CL114有機改質黏土TGA圖譜................81
圖二十九 CL120有機改質黏土TGA圖譜................81
圖三十 高純度與有機改質黏土CL87之FT-IR圖譜.....83
圖三十一 高純度與有機改質黏土CL88之FT-IR圖譜.....83
圖三十二 高純度與有機改質黏土CL114之FT-IR圖譜....84
圖三十三 高純度與有機改質黏土CL120之FT-IR圖譜....84
圖三十四 插層型與脫層型環氧樹脂複合材料示意圖....86
圖三十五 CL87有機黏土環氧樹脂X光繞射圖譜.........87
圖三十六 CL88有機黏土環氧樹脂X光繞射圖譜.........87
圖三十七 CL114有機黏土環氧樹脂X光繞射圖譜........88
圖三十八 CL120有機黏土環氧樹脂X光繞射圖譜........88
圖三十九 CL87-3wt%/Epoxy之TEM....................89
圖四十 CL88-3wt%/Epoxy之TEM....................89
圖四十一 PI-CL114 3wt%/Epoxy之TEM................90
圖四十二 PI-CL114 5wt%/Epoxy之TEM................90
圖四十三 PB55-CL114/Epoxy-3wt%之TEM..............91
圖四十四 CL120-5wt%/Epoxy-5wt%之TEM..............91
圖四十五 CL87有機黏土環氧樹脂TGA圖譜曲線圖.......95
圖四十六 CL88有機黏土環氧樹脂TGA圖譜曲線圖.......95
圖四十七 CL114有機黏土環氧樹脂TGA圖譜曲線圖......96
圖四十八 CL120有機黏土環氧樹脂TGA圖譜曲線圖......96
圖四十九 CL87有機黏土環氧樹脂DMA圖譜.............97
圖五十 CL88有機黏土環氧樹脂DMA圖譜.............97
圖五十一 CL114有機黏土環氧樹脂DMA圖譜............98
圖五十二 CL120有機黏土環氧樹脂DMA圖譜............98
圖五十三 有機黏土樹脂IR圖譜......................99

表索引
表一 黏土的分類與種類.............................3
表二 環氧樹脂封止材料的組成及功用................19
表三 銅箔基板一覽表..............................29
表四 印刷電路板分類表............................30
表五 天然黏土評估表..............................55
表六 矽化合物在29Si Solid State NMR中相對位置與結構..60
表七 天然黏土純化之ICP-AES.......................68
表八 高純度黏土結晶水失重量......................70
表九 天然黏土之結構式............................70
表十 膨潤土礦物對紅外線光譜之特性吸收峰..........71
表十一 純化級黏土之性質總表......................72
表十二 改質型黏土層間距..........................77
表十三 改質型黏土中插層量計算結果................79
表十四 奈米複合材料熱性質數據整理表.............100
表十五 有機黏土添加量膠化時間整理表.............103
表十六 奈米複合材料吸水率數據整理表.............106
表十七 銅箔基板數據比較整理表...................107
參考文獻
1. L. B. James, Clays Clay Miner. 2005, 50, 11-17
2. H. V. Olphen,” Clay colloid Chemistry”, Chapter V, Wiley-Interface
publication 1997, New York
3. P. Mati, Langmuir 2003, 19, 5502.
4. C. E Wearer et al,eds by D.Y.Zhang.Clay Minerals.Geology
Press.1973
5. A. Usuki,M Kawasumi, Y. Kojima, A Okada, T. Kurauchi. J. Mater.
Res. 1993, 8, 1174-1187.
6. 王澤民、周鳳潮、馬小凡、邱立民,膨潤土的提純及應用研究,
非金屬礦(大陸),1999,第22 巻,第3期
7.牛炳昆,膨潤土提純研究,化工礦物與加工,1999,第8期,p.6
8. S. Emanuela, Clays Clay Miner. 2005, 53, 179
9. F. J. Hingston , A review of anion adsorption. In .Adsorption of
Inorganics at Solid-Liquid Interfaces., Ann Arbor Sci., Ann Arbor, MI,
1981
10.洪昆煌,土壤化學,國立編譯館,1996
11.黃怡禎,礦物學,地球科學文教基金會,2000
12. C. Kexue, Diqiu Huaxue 2006,35,295.
13. T. Pinnavaia, J. Science 1983, 220, 365.
14.王守明,膨礦物及其加工技術,礦產保護與利用,1996, 第二期,p.21
15. R. M. Barrer, Clays Clay Miner. 1989, 37, 385.
16. C. May & Y. Tanaka, Epoxy Resins:Chemistry and Technology,
Marcel Dekker, New York.1998
17. D. Mohamed, Clays Clay Miner. 2002, 53, 250.
18. R. Dagani, Chemical & Engineering News 1999, 25.51
19. A. Akelah, P. Kelly, S. Qutubuddin and A. Moet, Clay Miner.
1994, 29, 169.
20.金宗哲,無機抗菌材料及應用,化學工業出版社,2004
21. J. F. Lee, Clays Clay Miner.1990, 38, 113.
22. D. Van,J,J Phys:Condens Matter 2005,17,2255
23. S. D.Williams,J Colloid Interface Sci 2002,255,303
24. D. Paul,J Colloid Interface Sci 2005,292,462
25. D. H.Solomon,D.G.Eds Hawthorne,Chemistry of pigments and
Fillers(John Wiley&Sons,Inc:New York)1983
26. A. Usuki,M. Kawasumi; Y. Kojima; A Okada; T. Kurauchi. J. Mater.
Res. 1993, 8, 1174-1187.
27. T. Lan, P. D. Kaviratna and T. J. Pinnavaia, J. Phys. Chem
Solids1996, 57,1005.
28. C. C. Riccardi, and R. J. J. Williams, J. Appl. Polym.. Sci.1986 ,32,
3445.
29. Y. Kojima et al J. Polym. Sci.: Part A: Polym. Chem. 1993, 31,1755.
30.張培萍,膨潤土加工與應用,化學工業出版社,2005
31.蔡宗燕,強塑廣用新知,1998,第76卷.
32. Schrade, Resins from Epichlorohydrin, Kunststoffe,1993, 43
33. S. Castan, Patent 211116,1879
34. B. Castan,. Patent 518057,1894
35. C. Castan, U.S. Patent 2324483,1943
36. C. Castan, U.S. Patent 2444333,1948
37. W. X. Zukas, N.S. Schneider, W.J. Macknight, Plom. Mat. Sci. Eng.
Proc., 1983,49, 588
38. J. Mijovic, J. Kin, J. Slaby, J. Appl. Polym. Sci., 1984,39, 3449
39. R. T. Morgan, Advance Polymer Science series, 1998,
Springer –Verlag, Belin
40. W. Zhen,L. Tie, and T. J. Pinnavaia, Chem. Mater. 1996, 8, 2200
41. H. Kuang-Yuh, Knowledge Bridge 2002,30.3
42. K. Yano, A. Usuki, and A. Okada, J. Polym. Sci., Part A: Polym.
Chem. 1997, 35, 2289.
43. H. L. Tyan, Y. C. Liu, and K. H. Wei, Polymer 1999, 40, 4877.
44. M. M. Al-Esaimi, J. Appl. Polym. Sci.1997,64, 367.
45. J. Wen, and G. L. Wilkes, Chem. Mater.1996, 8, 1667.
46. S. Komarneni, J. Mater. Chem.1992,2, 1219.
47.蔡宗燕,《奈米級無機材料的開發與應用》,化工資訊,1998.第12
卷,p.28,
48. Y. Fukushiima, S. J. Inagaki. Inclusion Phenom. 1987, 5,473
49.蔡宗燕,《奈米級無機層狀材料》,奈米科技導論,葉瑞銘編著,2004,p.3
50. A. Hoechst, U.S. Patent 5854371,1998
51. Sumitomo Bakelite Co., Ltd. JP. Patent 97-200522,1997
52.Hasegawa, U.S. Patent 6117932,2000
53. S. J. Suresh,Macromolecules,1994,27,348
54. R. Dagani, Chemical & Engineering News,1999,25
55. A. Usuki,T. Mizutani,Y.Fukushima,M.Fujimoto,O.Kamigaito, U.
S. Patent 4889885,1989
56. T. Lan and T. J. Pinnavaia, Chem. Mater. 1994, 6, 2216
57. S. K. Brauman, J. Fire Retard. Chem. 1980,7, 3
58. J. H. Park and S.C.Jana,Macromolecules,2003,36,2758
59. H. Shinn-Gow,W. Chung-Sheng, Thermochimica Acta,1998,316,
60. E. Sacher, Polymer, 1973,14, 91
61. S. Muroi, H. Ishimura, M. Outsuka, J. Appl. Polym. Sci., 1986,32,
5095
62. R. L. Miller, M.A. Oebser, Thermochimica Acta, 1980,36, 121
63. P. N. Son, C.D. Webber, J. Appl. Polym. Sci., 1973,17, 1305
64. J. M. Barton, D.C. Greenfield, Brit. Polym. J., 1986,18, 196
65. Y. G. Lin, H. Sautereau, J.P. Pascault, J. Polym. Sci., PartA, 1986,24,
2171
66. T. Guthner, B. Hammer, J. Appl. Polym. Sci., 1993,50, 1453
67. M.F. Grenier-Loustalot, M.-P. Bente, P. Grenier, Eur. Polym. J.,
1991,27,1201
68. M. D. Gilbert, N.S. Schneider, W. J. MacKnight, Macromolecules,
1991,24,360
69. M. Opresnik, A. Sebenik, M. Zigon, U. Osredkar, Thermochimica
Acta, 1991,178, 127
70. General Electric Co., U.S. Patent 4343731,1980
71. Westinghouse Electric Corp., U.S. Patent 4327143,1982
72. Westinghouse Electric Corp., U.S. Patent 4477512,1984
73. Westinghouse Electric Corp., U.S. Patent 4501787,1985
74. Hitachi, Ltd., U.S. Patent 4933228,1990
75. Mitsui Petrochemical Industries, Ltd., U.S. Patent 5081206,1992
76. General Electric Co., U.S. Patent 5089343,1992
77. General Electric Co., U.S. Patent 5096771,1992
78. General Electric Co., U.S. Patent 5262491,1993
79. The Dow Chemical Co., U.S. Patent 5405931,1995
80. Mitsubishi Gas Chemical Co., Inc., U.S. Patent 6714544,2004
81. General Electric Co., U.S. Patent 4311753,1982
82. Westinghouse Electric Corp., U.S. Patent 4452847,1984
83. Minnesota Mining and Manufacturing Co., U.S. Patent 4668736,1987
84. W. R. Grace Co.-Conn., U.S. Patent 4797455,1989
85. Fuji Kasei Kogyo Co. Ltd., U.S. Patent 5138018,1992
86. A.Rutgerswerke, U.S. Patent 5556705,1996
87. Ciba-Geigy Corp., U.S. Patent 5591811,1995
88. Sanyo Chemical Industries Ltd., U.S. Patent 5837785,1998
89. Sanyo Chemical Industries Ltd., U.S. Patent 6040398,2000
90.李志宏,《奈米黏土應用於環氧基材之高功能材料開發》,中原
大學化學研究所,2004
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top