跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 16:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭秀賢
研究生(外文):Hsiu-Hsien Peng
論文名稱:新穎燃料電池用鈉飛揚/中孔洞二氧化矽質子交換複合膜之製備與特性研究
論文名稱(外文):Preparation and Characterizations of the Novel Nafion/Mesoporous Silica Composite Membrane For Proton Exchange Membrane Fuel Cell
指導教授:陳玉惠陳玉惠引用關係
指導教授(外文):YuiWhei Chen-Yang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:71
中文關鍵詞:中孔洞二氧化矽燃料電池鈉飛揚
外文關鍵詞:Fuel CellNafionMesoporous Silica
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討以顆粒小尺寸化後之自製中孔洞SiO2 (M-AG)為添加物,製備Nafion/silica複合膜(M-AG/NF)之保水力、離子導電度、耐熱性、機械性質及其應用於燃料電池的影響
結果顯示,M-AG均勻分佈於Nafion基材中,M-AG/NF為一半透明膜。M-AG添加量為5wt% 之M-AG/NF複合膜保水力可達39%,較recast Nafion膜(RNF)之保水力提升77%。含M-AG之M-AG/NF膜材其SO3H官能基裂解溫度從RNF之300℃可提升至330℃以上,有效增加膜材之耐熱性。M-AG-NF膜在50℃獲得較佳導電度(1.55×10-2S/cm)為RNF之二倍。
本研究之M-AG-3/NF複合膜在70℃,操作氣體為H2/O2之質子交換膜燃料電池(PEMFC)性能測試顯示,其性能分別比杜邦公司之N212及N115提升了7.2%及64.5%。當使用Air當陰極進料氣體時,M-AG-3/NF複合膜性能比N212提升7.8%,可成為有潛力之燃料電池電解質膜。
In this study, a home-made high surface area mesoprous SiO2 particles (M-AG) was used as the filler to prepare Nafion/mesoporous-silica composite membranes (M-AG-NF). The water uptake, ionic conductivity, thermal resistance and mechanical property of the as-prepared nanocomposite membrane and its application on fuel cell were studied. It was found that M-AG particles were uniformly dispersed in the Nafion matrix, resulting in a translucent film. The water uptake of the composite membrane approached to 39% which was better than that of the recast film (RNF) by 77%. The decomposition temperature of the SO3H functional group was risen from 300℃for RNF to 330℃ for M-AG/NF. At 50℃, the best conductivity of the M-AG/NF membrane (1.55x10-2S/cm) was one time higher than that of RNF membrane. With H2/O2 as the input gases, the proton exchange membrane fuel cell (PEMFC) with M-AG-3/NF membrane resulted in the maximum performance at 70℃(1060mW/cm2 for power density and 2573mA/cm2 for current density). Besides, with H2/air as the input gases, the maximum power density and the current density of the PEMEC with M-AG-3/NF composite membrane were 725mW/cm2 and 1651mA/cm2, respectively. In all, with O2 as the cathode input gas the performance of the PEMFC with M-AG-3/NF composite membrane exhibited higher power density than N115 and N212 for 64.5% and 7.2%, respectively, while, with air as cathode input gas, the power density of the PEMFC with M-AG-3/NF membrane was than that with N212 for 7.8%.
謝誌 I
摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 VIII
第一章 緒論 1
1.1前言 1
1.2 燃料電池簡介 2
1.2.1 燃燃料電池發展史 2
1.2.2 燃料電池工作原理 3
1.3 燃料電池種類 5
1.3.1 鹼性燃料電池(Alkaline Fuel Cell, AFC) 6
1.3.2 磷酸燃料電池(Phosphoric Acid Fuel Cell‚PAFC) 6
1.3.3 熔融碳酸鹽燃料電池(Molten Carbonate Fuel Cell, MCFC) 6
1.3.4 固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC) 6
1.3.5 質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell‚PEMFC) 7
1.4 Nafion(全氟磺酸樹脂)簡介 9
第二章 基礎理論與文獻回顧 11
2.1 氣凝膠之簡介 11
2.2 氣凝膠發展史 11
2.3 氣凝膠的特性與應用 13
2.4 文獻回顧 17
2.4.1 全氟化合物高分子 17
2.4.2 親水性無機物的添加 19
2.5 研究動機 21
第三章 研究方法 23
3.1 實驗藥品 23
3.2 實驗設備 24
3.3複合膜的製備 25
3.3.1 實驗流程圖 25
3.3.2 實驗步驟 26
3.4 性能測試 26
3.4.1 保水力(Water uptake) 26
3.4.2 熱重量分析(TGA) 27
3.4.3 減弱式全反射傅立葉紅外光譜儀(FRIR-ATR) 27
3.4.4 導電度(Conductivity) 27
3.4.5 X光粉末繞射儀(XRD) 28
3.4.6 Aerogel粒徑測試 29
3.4.7 紫外、可見光吸收光譜儀(UV-Visble ) 30
3.4.8 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 31
3.4.9 機械性質(Mechanical Properties) 31
3.4.10 燃料電池性能測試(Cell Performance) 31
第四章 結果與討論 32
4.1 Silica Aerogel粒徑測試 32
4.2 光學性質分析 33
4.3 保水力(Water uptake) 34
4.4 複合膜之結構鑑定 37
4.5 膜之熱性質探討 39
4.6 膜之離子導電度 43
4.7 結晶型態的影響 46
4.8 膜材表面形態的觀察與表面元素分佈 47
4.9 複合膜之機械性質 51
4.10 PEMFC燃料電池效能 52
第五章 結論 55
參考文獻 57
自傳 60
圖目錄
圖1-2-2 質子交換膜燃料電池工作原理..................................................4
圖1-4 Nafion 的結構式.............................................................................9
圖2-3 Aerogel structure ...........................................................................15
圖2-4-1 Commercial PFSA Membranes..................................................18
圖3-4 導電度測量裝置...........................................................................28
圖3-4-5 布拉格(Bragg’s law)定律示意圖..............................................29
圖4-3 Water uptake 文獻回顧與本研究之趨勢圖.................................35
圖4-4-1 S-AG/NF 複合膜FTIR-ATR 之圖譜.......................................38
圖4-4-2 M-AG/NF 複合膜FTIR-ATR 之圖譜......................................39
圖4-5-1 M-AG/NF 複合膜TGA 分析圖................................................40
圖4-5-2 Aerogel TGA 圖.........................................................................41
圖4-6-1 S-AG/NF 複合膜離子導電度(S/cm) ........................................44
圖4-6-2M-AG/NF 複合膜離子導電度(S/cm)........................................45
圖4-7 M-AG/NF 複合膜之XRD............................................................46
圖4-8-1 M-AG-1/NF 複合膜之表面形態..............................................48
圖4-8-2 M-AG-2/NF 複合膜之表面形態..............................................48
圖4-8-3 M-AG-3/NF 複合膜之表面形態..............................................49
圖4-8-4 M-AG-1/NF 複合膜表面元素分佈..........................................50
圖4-8-5 M-AG-3/NF 複合膜表面元素分佈..........................................50
圖4-10-1 voltage v.s. current density(H2/O2)圖.......................................53
圖4-10-2 power density v.s. current density(H2/O2)圖............................53
圖4-10-3 voltage v.s. current density(H2/Air)圖.....................................54
圖4-10-4 power density v.s. current density(H2/Air)圖...........................54
表目錄
表1 各類燃料電池基本性質比較...........................................................8
表2 國外廠商生產的質子交換膜材料.................................................10
表3 氣凝膠之性質、特色與應用.........................................................16
表4 Commercial PFSA Membranes by Producer....................................18
表4-2-1 S-AG/NF 複合膜之UV 透光度...............................................33
表4-2-2 M-AG/NF 複合膜之UV 透光度..............................................33
表4-3-1 S-AG//NF 複合膜之Water uptake............................................34
表4-3-2 M-AG/NF 複合膜之Water uptake............................................35
表4-3-3 文獻回顧與本研究之water uptake ..........................................36
表4-4-1 複合膜FTIR-ATR 之譜圖.......................................................37
表4-5-1 M-AG/NF 複合膜數據..............................................................41
表4-5-2 Aerogel 數據..............................................................................42
表4-6-1 S-AG/NF 複合膜之離子導電度(S/cm) ....................................44
表4-6-2 M-AG/NF 複合膜之離子導電度(S/cm)...................................45
表4-9 M-AG/NF 複合膜拉力數據.........................................................51
1.萬其超,電化學,商務書局,1992.
2.陳玉惠、陳世揚、黃俊哲,奈米科技導論‚2004‚ 106.
3.鄭耀宗、徐耀昇‚八十八年節約能源論文發表會論文專輯‚409.
4.E.I. Ko‚Chemtech, 1993, 23‚31.
5.A.C. Pierre, G.M. Pajonk, Chem. Rev., 2002‚ 102, 4243 .
6.林文發、周士海‚化工資訊‚2001‚10‚48.
7.盧偉珠‚化工資訊‚2001‚12‚58.
8.S.S. Kistler, Nature, 1931, 127, 741.
9.G. Carlson, D. Lewis, K. Mckinley, J. Richardson ‚ T. Tillotson, J. non-cryst. solids, 1995‚186, 372.
10.Z. Deng, J. Wang, A. Wu, J. Shen ‚B. Zhou, J. non-cryst. solids, 1998,225, 101.
11.G. Herrmann, R. Iden, M. Mielke, F. Teich ‚ B. Ziegler, J. non-cryst. solids, 1995‚186, 380.
12.L.W. Hrubesh, J. non-cryst. solids, 1998, 225, 335.
13.E.I. Ko, Encyclopedia of chemical technology, Kirk-Othmer, 4th ed., V.S‚1998‚1.
14.M. Schmidt‚F. Schwertfeger, J. non-cryst. solids, 1998‚225, 364.
15.F. Schwertfeger, D. Frank ‚M. Schmidt, J. non-cryst. solids, 1998‚225, 24.
16.王天路‚郭德文‚化工資訊‚ 2002‚ 8‚66.
17.S. Suttiruengwong, Der Technischen Fakultät der Universität Erlangen-Nürnberg, DOKTOR-INGENIEUR, 2005.
18.G. Pourcelly‚C. Gavach‚In Proton Conductors,Solids,membranes,and Gels-Materials and Devies; P. Colomban, Ed.;Canbridge University Press: New York, 1992.
19.M. Watanabe‚H. Uchida, Y. Seki, M. Emori, The Electrochemical Society Meeting; PV94-2, Abstract No.606; Electrochemical Society : Pennington, NJ, 1994, 946.
20.P.L. Antonucci, A.S. Aricò, P. Creti, E. Ramunni, V .Antonucci, Solid State Ionics‚1999‚125‚431.
21.K.A. Mauritz, Mater. Sci. Eng., 1998‚6‚121.
22.N. Miyake, J.S. Wainwright, R.F. Savinell, J.Electrochem.Soc.2001‚148‚898.
23.V. Baglio, A.S. Aricò, A.Di. Blasi, V. Antonucci, P.L. Antonucci,
S. Licoccia, E. Traversa, F.S. Fiory ‚ Electrochim Acta‚2005‚50‚1241.
24.V. Baglio, A.Di. Blasi , A.S. Aricò, V. Antonucci, P.L. Antonucci , F. Nannetti, V. Tricoli‚Electrochim Acta‚2005‚50‚5181.
25.P. Staiti, A.S. Aricò, V. Baglio, F. Lufrano, E. Passalacqua, V. Antonucci, Solid State Ionics‚2001‚145.101.
26.S. Malhotra, R. Datta, J. Electrochem. Soc., 1997, 144, 23.
27.B. Tazi, O. Savadogo, Electrochim. Acta ‚2000, 45, 4329.
28P. Dimitrova, K.A. Friedrich, U. Stimming, B. Vogt, Solid State Ionics‚ 2002, 150, 115.
29Z.G. Shao, H. Xu, M. Li, I.M. Hsing, Solid State Ionics, 2006, 177, 779.
30Z.G. Shao, P. Joghee, I.M. Hsing, J. membr. sci, 2004, 229, 43.
31P. L.Antonucci, A.S. Aricò, P. Creti, E. Ramunni, V. Antonucci, Solid State Ionics‚1999, 125, 431.
32K.T. Adjemian, S. Srinivasan, J. Benziger, A. B.Bocarsly, J. Power Sources‚2002, 109, 356.
33K.T. Adjemian, S.J. Lee, S. Srinivasan, J. Benziger, A.B. Bocarsly, J. Electrochem. Soc. 2002, 149, 256.
34H. Wang, B.A. Holmberg, L. Huang, Z. Wang, A. Mitra, J.M. Norbeck, Y. J. Yan, Mater. Chem., 2002, 12, 834.
35A. Saccà, A. Carbone, E. Passalacqua, A. D’Epifanio, E. Traversa, E. Sala, F. Traini, R. Ornelas, J. Power Sources‚ 2005, 152, 16.
36K.D. Kreuer, A.Fuchs, M. Ise, M. Spaeth, J. Maier, Electrochim Acta, 1998, 43, 1281.
37C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, A.B. Bocarsly, J. Power Sources, 2001, 103, 1.
38袁敬堯,博士論文,中原大學化學所‚ 2002.
39黃立寧,碩士論文,元智大學化工所,2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊