跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/06 12:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳韋智
研究生(外文):Wei-Chin Chen
論文名稱:Ⅲ族氮化物薄膜式表面聲波元件特性研究
論文名稱(外文):Characteristic study of thin film SAW devices made on Ⅲ-Nitrides
指導教授:高慧玲高慧玲引用關係
指導教授(外文):Hui-Ling Kao
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:83
中文關鍵詞:氮化鎵表面聲波元件相對溼度氮化鋁頻率溫度係數迴旋濺鍍系統
外文關鍵詞:AlNTCFGaNHelicon sputtering systemrelative humiditySAW
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
表面聲波元件近年來在通訊領域上成為相當熱門的研究領域,此外因其具有高靈敏度的特性,在感測器方面的應用也與日俱增;爲了讓元件能夠具有更高操作頻率、低插入損耗以及與半導體製程整合,利用壓電薄膜製作層狀結構表面聲波元件是相當重要的一件事。
本實驗利用迴旋濺鍍系統(Helicon sputtering system) 沉積氮化鋁(AlN)薄膜在氮化鎵(GaN)基板上,此薄膜經X光繞射儀分析,證實為一磊晶薄膜,以此層狀結構製作表面聲波元件。利用網路分析儀量測元件聲波波速、插入損耗、旁帶抑制等參數,討論表面聲波元件特性。
本論文主要探討AlN/GaN/Sapphire及GaN/Sapphire結構的元件特性以及溫度、環境溼度對元件造成的影響。量測結果發現GaN/Sapphire結構SAW元件之插入損耗為-22.6dB,旁帶抑制為4.8dB;AlN(1μm)/GaN/Sapphire結構SAW元件之插入損耗為-20.6dB,旁帶抑制為12.9dB;AlN(2μm)/GaN/Sapphire結構SAW元件之插入損耗為-18.8dB,旁帶抑制為5.1dB。氮化鎵基板的頻率溫度係數為-49.2ppm/℃,元件頻率變化率對相對濕度(40%~80%)達61.1ppm;沉積1μm氮化鋁薄膜後,其頻率溫度係數為-44.8 ppm/℃,元件頻率變化率對相對濕度(40%~80%)僅3.2ppm。由實驗結果可知沉積氮化鋁薄膜於氮化鎵基板上可以改善元件特性:降低插入損耗、提高旁帶抑制、減少環境溼度對元件影響、具有溫度補償效果。
In recent years, the surface acoustic wave (SAW) devices have become an attractive research field for the application of high frequency filters as well as sensors. In order to obtain high frequency and low insertion loss devices, it is important to use piezoelectric thin films to fabricate layered structure SAW devices.
In this thesis, high quality epitaxial AlN thin films have been deposited on GaN/Sapphire substrates at low temperature of 300�aC using Helicon sputtering system. The layered structure SAW devices fabricated on AlN/GaN/Sapphire were investigated and demonstrated.
The characteristics of AlN/GaN/Sapphire and GaN/Sapphire and the effects of temperature and humidity are discussed. Superior SAW properties in terms of insertion loss and sidelobe rejection have been obtained for the SAW devices made on AlN/GaN/Sapphire, compared to those of the ones made on GaN/sapphire. The temperature coefficient of frequency(TCF) of GaN/Sapphire and AlN/GaN/Sapphire are -49.2ppm/℃ and -44.8ppm/℃, respectively. It was found that AlN layer can compensate the TCF of SAW devices of GaN/Sapphire substrates. In addition, the ratio of center frequency variation of AlN/GaN/Sapphire is 3.2ppm, which is much lower than that of GaN/Sapphire (61.1ppm) at relative humidity ranging from 40 to 80%. These results show that the characteristics can be improved by depositing AlN on GaN/Sapphire.
目錄
中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XIII


第一章 緒論 1
1-1表面聲波元件之簡介 1
1-2 研究背景與目的 3
第二章 原理 8
2-1 氮化鎵的結構與特性 8
2-2 氮化鋁的結構與特性 10
2-3 迴旋濺鍍原理 11
2-3-1 電漿輝光放電 12
2-3-2 射頻濺鍍 14
2-3-3 磁控濺鍍 16
2-3-4 反應性濺鍍 18
2-3-5 迴旋波濺鍍 19
2-4 表面聲波元件理論與特性 21
2-4-1 表面聲波與壓電效應 23
2-4-2 Delta function model 26
2-5 表面聲波元件參數 30
2-5-1 波速 (VP) 30
2-5-2 插入耗損 (Insertion loss) 30
2-5-3 機電耦合係數(K2) 31
2-5-4 頻率溫度係數 (TCF) 32
2-6 量測儀器 33
2-6-1 X光繞射儀 33
2-6-2 網路分析儀 34
2-6-2-1 S參數 35
2-6-2-2 晶圓量測法 37
第三章 實驗 40
3-1 AlN薄膜沉積 40
3-1-1 基板清洗 40
3-1-2 氮化鋁薄膜沉積 40
3-1-2-1 迴旋濺鍍系統 41
3-1-2-2 薄膜沉積 42
3-2 層狀結構表面聲波元件之製作 44
3-2-1 指叉電極之設計與參數 44
3-2-2 微影蝕刻 47
第四章 結果與討論 51
4-1 氮化鋁薄膜分析 51
4-2 表面聲波元件特性分析 55
4-3環境溼度影響量測 62
4-4 頻率溫度係數(TCF)量測 64
4-4-1 薄膜厚度與頻率溫度係數 64
4-4-2 波長與頻率溫度係數 67
4-4-3 氮化鋁與氮化鎵頻率溫度係數比較 69
第五章 結論與未來展望 72
參考文獻 73


圖目錄
圖2-1 氮化鎵基本結構 9
圖2-2 氮化鋁的結晶構造: (a) 變形四面體結構 (b) 單位晶胞 11
圖2-3 輝光放電示意圖 13
圖2-4 典型射頻平面電極濺鍍結構圖 16
圖2-5 平面型圓型磁控之結構圖 17
圖2-6 平面磁控濺鍍中電子運動示意圖 17
圖2-7 反應性濺鍍示意圖 19
圖2-8 迴旋波示意圖 20
圖2-9 迴旋濺鍍系統 21
圖2-10 表面聲波在彈性固體上運動 22
圖2-11 正壓電效應 24
圖2-12 逆壓電效應 24
圖2-13 表面聲波濾波器基本結構 25
圖2-14 表面聲波元件傳輸特性 26
圖2-15 (a)雙向均勻指叉 (b)指叉邊緣產生的電場 (c)將電場等效成Delta function sources 29
圖2-16 (a)令指叉中心為x = 0 (b)Delta function model 響應方向示意圖 29
圖2-17 X光繞射儀之結構 34
圖2-18 雙埠網路訊號流程圖 36
圖2-19 G-S-G 形式微波探針示意圖 38
圖2-20 SOLT校正板示意圖 39
圖3-1 迴旋磁控濺鍍系統架構圖 42
圖3-2 濺鍍氮化鋁實驗流程圖 43
圖3-3 基本型之指叉電極 45
圖3-4 On Wafer形式之指叉電極 45
圖3-5 放大100倍之λ=16μm表面聲波元件 46
圖3-6 放大1500倍之λ=16μm表面聲波元件 46
圖3-7 微影蝕刻實驗之流程圖 50
圖4-1 不同溫度下射頻功率150w、coil功率50w、氮氣氬氣比75%、濺鍍壓力為1m Torr沉積氮化鋁薄膜於GaN/Sapphire之XRD圖 52
圖4-2 在300℃射頻功率150w、coil功率50w、氮氣氬氣比75%、濺鍍壓力為1m Torr沉積氮化鋁薄膜於GaN/Sapphire之XRD圖 52
圖4-3 AlN(101)、GaN(101)、Sapphire(104) ψ方向掃描量測圖 54
圖4-4 GaN厚度3.6μm且元件波長為16μm之頻率響應圖 57
圖4-5 GaN厚度3.6μm且元件波長為16μm之S11、S22圖 57
圖4-6 AlN厚度1μm且元件波長為16μm之頻率響應圖 58
圖4-7 AlN厚度1μm且元件波長為16μm之S11、S22圖 58
圖4-8 AlN厚度2μm且元件波長為16μm之頻率響應圖 59
圖4-9 AlN厚度2μm且元件波長為16μm之S11、S22圖 59
圖4-10 波長為16μm之氮化鋁(1μm)、氮化鎵頻率響應比較圖 61
圖4-11 厚度1μm其波長不同之氮化鋁頻率響應比較圖 61
圖4-12 氮化鎵SAW頻率變化對相對濕度關係圖 63
圖4-13 氮化鋁SAW頻率變化對相對濕度關係圖 63
圖4-14 氮化鋁與氮化鎵SAW相對濕度變化關係圖 64
圖4-15 氮化鎵基板厚度波長比對TCF關係圖 65
圖4-16 元件波長16μm之氮化鎵基板溫度變化對頻率關係圖 66
圖4-17 元件波長16μm且氮化鋁薄膜厚度為1µm之溫度變化對頻率關係圖 66
圖4-18 元件波長16μm且氮化鋁薄膜厚度為2µm之溫度變化對頻率關係圖 67
圖4-19 波長32µm不同厚度之氮化鋁薄膜在GaN/Sapphire上TCF之關係 68
圖4-20 波長16µm不同厚度之氮化鋁薄膜在GaN/Sapphire上TCF之關係 69
圖4-21 比較氮化鋁與氮化鎵對元件TCF的影響 70
圖4-22 TCF值與波長厚度比關係圖 71


表目錄
表2-1 聲波傳遞方式 22
表3-1 濺鍍氮化鋁之最佳參數表 43
表3-2 基本型指叉電極設計之參數 47
表4-1 不同厚度之氮化鋁薄膜與氮化鎵基板特性比較表 60
表4-2 不同波長、厚度之氮化鋁薄膜對TCF影響 69
表4-3 文獻參考之元件結構圖 71
1 Lord Rayleigh, “On waves propagated along the plane surface of an elastic solid,” Proc. London Math. Soc., Vol. 17, pp. 4, 1885.
2 R. M. White, and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves,” Appl. Phys. Lett. 7, pp. 314-316, 1965.
3 J. J. Campbell and W. R. Jones, “A method for estimation estimation optical crystal cuts and propagation directions for excitation of piezoelectric surface waves,”IEEE Trans. Son. Ultrason., Vol. 15, 1968.
4 A. H. Fahmy and E. L. Adler, “Propagation of acoustic surface waves in multilayers : A matrix description,” Appl. Phy. Lett, Vol. 22, No. 10, pp. 495-497, 1973.
5 G. Sauerbrey, Z. Phys. 155 206, 1959.
6 T. Moriizumi, A. Saitou, T. Nomura, “Multi-channel SAW chemical sensor using 90 MHz SAW resonator and partial casting molecular films,” IEEE Ultrasonics Symposium, P499-502, 1994.
7 V. Hinrichsen, G. Scholl, M. Schubert, T. Ostertag, “Online monitoring of high-voltage metal-oxide surge arresters by wireless passive surface acoustic wave (SAW) temperature sensors,” Eleventh International Symposium, P238-241, 1999.
8 S. Ballandras, W. Daniau, G. Martin, P. Berthelot,“Wireless temperature sensor using saw resonators for immersed and biological applications,” Eleventh International Symposium,
P445-448, 2002 74
9 R. S. Falconer, R. Lec, J. F. Vetelino, Z. Xu, “Optimization of a SAW metal oxide semiconductor gas sensor,” IEEE Ultrasonics Symposium, P. 585-590, 1989.
10 G. Watson, W. Horton, E. Staples, “Gas chromatography utilizing SAW sensors,” IEEE Ultrasonics Symposium, P305-309, 1991.
11 M. Rapp, H. Gemmeke, J. Reichert, A. Voigt, “Analytical microsystem for organic gas detection based on SAW devices,”IEEE Ultrasonics Symposium, P619-622, 1994.
12 C. K. Campbell, “Surface Acoustic Wave Devices for Mobile and Wireless Communications,” ACADEMIC PRESS, INC., 1998.
13 H. Ieki, M. Kadota, “ZnO thin films for high frequency SAW devices,” Proc. IEEE Ultrasonics Symp., Caesars Tanoe, NV, USA, Vol. 1, pp. 281-289, 1999.
14 H. L. Kao, P.J. Shih, C. H. Lai, “The study of preferred orientation growth of aluminum nitride thin films on ceramic and glass substrates,” JJAP, vol. 38, pp. 1526-1529, 1999.
15 E. Iborra, M. Clement, J. Sangrador, A. Sanz-Hervas, L. Vergara, M. Aguilar, “Effect of Particle Bombardment on the Orientation and the Residual Stress of Sputtered AlN Films for SAW
Devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 51, pp. 352-358, Mar, 2004.
16 S. Strite and H. Morkoc, “GaN, AlN, and InN: A review,” J. Vac. Sci. Technol. B, vol.10, pp. 1297-1267, 1992.
17 S. H. Lee, H. H. Jeong, S. B. Bae, H. C. Choi, J. H. Lee, Y. H. Lee, “Epitaxially grown GaN thin-film SAW filter with high velocity and low insertion loss,” IEEE Trans. Electr. Dev., vol.75 48, Issue 3, pp. 524-529, 2001.
18 S. Nagahama, T. Yanamoto, M. Sano, T. Mukai, “Characteristics of InGaN laser diodes in the pure blue region,” Applied Physics Letters, vol. 79, Issue 13, pp. 1948-1950, 2001.
19 Y. F. Wu, D. Kapolnet, J. P. Ibbetson, P. Parikh, B. P. Keller, U. K. Mishra, “Very-high power density AlGaN/GaN HEMTs,”IEEE Electron Dev. Lett., vol. 48, Issue 3, pp. 586-590, 2001.
20 D. H. Youn, V. Kumar, J. H. Lee, R. Schwindt, W. J. Chang, J. Y. Hong, C. M. Jeon, S. B. Bae, K. S. Lee, J. L. Lee, J. H. Lee, I. Adesida, “High power 0.25 μm gate GaN HEMTs on sapphire
with power density 4.2 W/mm at 10GHz”,Electron. Lett., vol.39, Issue 6, pp. 566-567, 2003.
21 A. F. Wright, “Elastic properties of zinc-blende and wurtzite AlN,GaN, and InN,” J. Appl. Phys., vol. 82, Issue 6, pp. 2833-2839,1997.
22 M. S. Shur, A. D. Bykhovski, R. Gaska, “Pyroelectric and Piezoelectric Properties of GaN-Based Materials,” MRS Internet J. Nitride Semicond. Res., 4S1, G1.6, 1999.
23 J. Camacho, P. V. Santos, F. Alsina, M. Ramsteiner, K. H. Ploog, A. Cantarero, H. Obloh, J. Wagner, “Modulation of the electronic properties of GaN films by surface acoustic waves,”JOURNAL OF APPLIED PHYSICS, vol.94,Issue 3, pp. 1892-1897, 2003.
24 K. F. Choi, H. J. Kim, S. J. Chung, J. Y. Kim, T. K. Lee, Y. J. Kim, “Experimental and theoretical characterization of the surface acoustic wave propagation properties of GaN epitaxial layers on c-plane sapphire,” JOURNAL OF MATERIALS RESEARCH, vol. 18, Issue 5, pp.1157-1161, 2003.
25 J. H. Lee, M. B. Lee, S. H. Hahm, Y. H. Lee, J. H. Lee, Y. H. Bae, H. K. Cho, “Growth of semi-insulating GaN layer by controlling size of nucleation sites for SAW device applications,” MRS INTERNET JOURNAL OF NITRIDE SEMICONDUCTOR
RESEARCH, vol. 8, No. 5, 2003.
26 K. Tsubouchi, K. Sugat, N. Mikoshiba, ”Zero temperature coefficient surface acoustic wave devices using epitaxial AlN films,” IEEE Ultrasonics Symposium, pp. 340-345, 1982.
27 C. W. Nam, K. C. Lee, “Structural properties and frequency response of AlN thin film surface acoustic wave device,” Science and Technology, vol. 1, pp. 204-206, 2001.
28 S. Tomabechi, S. Kameda, K. Masu, K. Tsubouchi, “2.4 GHz front-end multi-track AlN/α-Al2O3 SAW matched filter,”IEEE Ultrasonics Symposium, vol.1, pp. 73-76, 1998.
29 C. Caliendo, G. Saggio, P. Verardi, E. Verona, “Piezoelectric AlN film for SAW devices applications,” IEEE Ultrasonics Symposium, vol.16, pp. 249-252, 1993.
30 I. JFritz, Y. J. Drummond, Electronics Letters, 31, 68, 1995
31 T. Shibata, Y. Hori, K. Asai, Y. Nakamura, M. Tanaka, K.Kaigawa, J. Shibata and H. Sakai, “2.4 GHz SAW filters using AlN deposited on off-angle R-plane sapphire substrates by MOCVD,” IEEE Ultrasonics Symposium, P287-292, 2002.
32 J. W. Soh, W. J. Lee, J. H. Park and S. W. Lee, “SAW characteristics of AlN films deposited on various substrates using ECR plasma enhanced CVD and reactive RF sputtering,” IEEE Ultrasonics Symposium, vol.1, P299-302, 1996.
33 A. Mele, A. G. Guidoni, T. M. Palma, R. Teghil and S. Orlando,“Broadband Optical Networks/Smart Pixels/Optical MEMs and Their Applications,” IEEE/LEOS Summer Topical Meetings, 996,65, 1996.
34 M. Ishihara, S. J. Li, H. Yumoto, K. Akashi and Y. Ide, “Thin Soild Films,” 316, 152, 1998.
35 H. Liaw and W. Cronin, “The SAW characteristics of sputtered aluminum nitride on silicon,” IEEE Ultrasonics Symposium,P267-270, 1993.
36 H. C. Lee, K. Y. Lee, Y. J. Yong, J. Y. Lee and G. H. Kim, “Thin Soild Films,” 271, 50, 1998.
37 L. A. Coldren and R. L Rosenberg, “Surface-acoustic-wave resonator filters,” proc of IEEE, 67 p147-158, 1979.
38 R. H. Tancrell and M. G. Holland, “Acoustic surface wave filters,” proc of IEEE, 59 p393-409, 1971.
39 K. Sugal, K. Tsubouchi and N. Mikoshiab,“Zero Temperature coefficient Surface-Acoustic-Wave Delay Lines on AlN/Al2O3,”JJAP, 21 (5) p303-304, 1982.
40 K. Yamanouchi, H. Satoh, T. Meguro, Y.Wagatsuma,“High Temperature Stable GHZ-Range Low-loss Wide Band Transducers and Filter Using SiO2/LiNbO3, LiTabO3,” IEEE Trans, Ultrason. Ferroelectric & Frequency Control, 42(3) p392-396,1995.
41 H. H. Jeong, S. K. Kim, J. H. Lee and Y. H. Lee, “Investigation of Dopant Dependent Wave Velocity in GaN Thin Film SAW Filter,” IEEE Ultrasonics symposium, p207-209, 2001.
42 T. E. Parker and M. B. Schulz, “Temperature Stable Surface Acoustic Wave Delay Lines with SiO2 Film Overlays,” Proc.IEEE Ultrason. Symp, pp.295-298, 1974.
43 T. E. Parker and H. Wichansky, “Material Parameters of the Temperature-Stable Si02/YZ-LiTaO3 Structure,” Proc. IEEE Ultrason. Symp, pp.503-507, 1975.
44 K. S. Kao,C. C. Cheng and Y. C. Chen,“Synthesis and Surface Acoustic Wave Properties of AlN Films Deposited on LiNbO3 Substrates,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol.49, No.3, p.345-348, March 2002.
45 S. Wu, L. Wu, F. C. Chang and J. H. Chang, “Temperature Compensation with AlN Film on Y-128° LiNbO3,”JJAP, Vol.40,pp471-473, 2001.
46 S. K. Kim, M. J. Park, et al, “Investigation of Characteristics of SAW filter using un-doped GaN epitaxial layer grown by MOCVD on Sapphire substrate,”IEEE Ultrasonic Symposium,p.259,2001.
47 S. Camou, Th. Pastureaud, H. P. D. Schenk, S. Ballandras and V. Laude, “Guided elastic waves in GaN-on-sapphire,” Electronics Letters,Vol.37, No.16, p.1053-1555, 2nd August 2001.
48 F. Calle, J. Pedros, T. Palacios, and J. Grajal, “Nitride-based surface acoustic wave devices and applications,” Phys. Stat. sol.(c) 2, No. 3, p.976-983, 2005.
49 K. Uehara, C. M. Yang, H. NaKamura, S.Kameda, H. Nakase and K. Tsubouchi, “AlN epitaxial film with atomically flat surface for GHz-band SAW devices,” IEEE Ultrasonic Symposium, pp.135-138, 2002.
50 J. I. Pankove and T. D. Moustakas, Gallium Nitride (GaN) I San Diego, Academic Press, p.1-10, 1998.
51 B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. Denbaars and J. S. Speck, “Role of treading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., 68, p.643-645, 1996.
52 T. Lei, M. Fanciulli, R. J. Molnar, T. D. Moustakas, R. J. Graham,and J. Scanlon,“Epitaxial growth of zinc blende and wurtzitic gallium nitride thin films on (001) silicon,”Appl. Phys. Lett. 59,944, 1991.
53 R. V. Stuart, Vacuum Technology, “Thin Films and Sputtering,”1983.
54 J. H. Edgar and W. J. Meng, “Chapter 1-3 Crystal structure, mechanical properties,thermal properties and refactive index of AlN,”Properties of Group Ⅲ Nitrides, 1993.
55 B. Gil and F. A. Ponce, “Chapter 4 Structural Defects and Materials Performance of the Ⅲ-Ⅴ Nitrides,” Group Ⅲ Nitride Semiconductor Compounds Physics and Applications, P.124, P.127, P.197, 1998.
56 C. Morosanu, T. A. Stoica, T. F. Stoica, D. Necsoiu and M. Popescu, “Optical, Electrical and structural properties of AlN thin films,” Semiconductor Conference, P.193-186, 1995.
57 C. Caliendo, G. Saggio, P. Verardi, E. Verona, “Piezoelectric AlN Film for SAW Devices Application,” IEEE Ultrasonics symposium, P.249-252, 1993.
58 E. Janczak-Bienk, H. Jensen and G. Sorensen, Mater. Sci. and Eng. A140, P.696, 1991.
59 K. S. Kao, Y. C. Chen, Y. H. Lee,“Temperature Coefficients of SAW velocity for AlN thin film sputtered on ST-X Quartz,”IEEE Ultrasonic Symposium, p.239, 2002.
60 H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata and S. Nakano, “Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices,” Appl. Phys. Lett. 64(2), p.166-168, 10 January1994.
61 J. Xu, H. Ying, G. Auner, “Development of Aluminum Nitride-Based Acoustic Wave Sensors,” IEEE, p.1716-1717,2002.
62 R. W. Berry, P. M. Hall, M. T. Harris, “Thin Film Technology,”Van Nostrand Reinhold, P.201, 1980.
63 R. W. Boswell, Physics Letters, 33A, 457,1970.
64 M. Sugawara, “Plasma Etching Fundamentals and Applications,”321, 1998.
65 S. M. Yun, J. H. Kim and H. Y. Chang, “Electrical characteristics of helicon wave plasmas,” IEEE Transactions on Plasma Science,Vol.26, p.159-166, 1998.
66 Y. Mouzouris and J. E. Scharer, “Modeling of profile effects for inductive helicon plasma sources,” IEEE Transactions on Plasma Science, Vol24, p.152-160, 1996.
67 吳朗, “電子陶瓷-壓電” 全欣科技圖書, 83 年.
68 汪建民, “強介電陶瓷薄膜專題緒論”工業材料,第107 期,P44-48, 1995.
69 P. Lginbuhl, S. D. Collins, G. A. Racine, M. A. Gretillat, N. F. De Rooij, “Ultrasonic flexural Lamb-Wave actuators based on PZT tjin film,” Sensors and Actuators A: Physical, Vol 64 Issue 1,P41-49, January 1 ,1998.
70 高國陞, “表面聲波元件之頻率及溫度特性之研究”,中山大學博士論文, 2004.
71 C. Campbell, “Surface Acoustic Wave Devices and Their Signal Processing Applications,”Academic Press, INC, 1989.
72 D. M. Pozar, “Microwave Engineering,”pp.230-231, 1990.
73 Marten Seth, “利用寬頻網路分析儀技術測試CDMA 元件”,電子工程專輯, 2003.
74 奈米通訊。第七卷第三期19.高頻元件量測技術.
75 C. H. Wu, W. Y. Chiu, H. L. Kao, “Textured and smooth AlN films prepared by Helicon sputtering system [for SAW device applications],” Electronics Letters, vol. 37, pp. 253 – 255, Feb.,2001.
76 H. F. Lin, C. T. Wu, W. C. Chien, S. W. Chen, H. L. Kao, J. I. Chyi and J. S. Chen,“Investigation of layered structure SAW devices fabricated using low temperature grown AlN thin film on GaN/sapphire,” IEEE transactions on ultrasonics, ferroelectrics,and frequency control, vol. 52, no. 5, may 2005.
77 C. M. Lueng, H. L. W. Chan, C. Surya and C. L. Choy,“Piezoelectric coefficient of aluminum nitride and gallium nitride,” Journal of Applied Physics, Vol 88, No.9, 2000.
78 Y. Kurihara, T. Endoh and K. Yamada, “The influence of moisture on surface properties and insulation characteristics of AlN substrates,” IEEE Transactions on components, 1989.
79 H. H. Jeong, S. K. Kim, Y. C. Jung, H. C. Choi, J. H. Lee and Y.
H. Lee, “Characteristic Analysis of SAW Filters Fabricated Using GaN Thin Film,” phys. Stat. sol. 188, No. 1, 247-250,2001.
80 K. Nishimura, N. Shigekaea, H. Yokoyama and K. Hohkawa,“Temperature Dependence of Surface Acoustic Wave Characteristics of GaN Layers on Sapphire Substrates,” JJAP, Vol. 44, No. 18, pp.564-565, 2005.
81 簡維政, “氮化鎵上氮化鋁薄膜式表面聲波元件特性研究”,中原大學碩士論文, 2005.
82 J. Xu, J. S. Thakur, G. Hu, Q. Wang, Y. Danylyuk, H. Ying and G.
H. Auner, “Angular dependence of surface acoustic wave characteristics in AlN thin films on α-plane sapphire substrates,”Appl. Phys. A, 2006.
83 K. Uehara, C. M. Yang, T. Shibata, S. K. Kim, S. Kameda, H. Nakase and K. Tsubouchi, “Fabrication of 5-GHz-Band SAW Filter with Atomically-Flat-Surface AlN on Sapphire,”IEEE Ultrasonics Symposium, 2004.
84 C. Caliendo, “Gigahertz-band electronacoustic devices based on AlN thick films sputtered on Al2O3 at low temperature,” Applied Physics Letters. Vol.83, No.23, 2003.
85 P. H. Carr, “New temperature compensated materials for SAW devices,” IEEE Ultrasonics Symposium, 1974.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top