跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李順勝
研究生(外文):Shun-Sheng Lee
論文名稱:在部分頻帶雜訊干擾下應用低密度奇偶檢驗碼於快跳頻系統之研究
論文名稱(外文):Low-Density Parity-Check Codes for FFH/BFSK Systems with Partial-Band Noise Jamming
指導教授:鄭立德
指導教授(外文):Li-Der Jeng
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:60
中文關鍵詞:快跳頻/二位元鍵移調變分集結合技術低密度奇偶檢驗碼部分頻帶雜訊干擾
外文關鍵詞:FFH/BFSKLDPCDiversity CombiningPartial-Band noise Jamming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要是在研究低密度奇偶檢驗碼(LDPC)應用於快跳頻(FFH)二元頻率鍵移(BFSK)的系統上,通過有部分頻帶雜訊干擾時其系統錯誤率表現。我們使用不同的分集結合技術來計算每個編碼字元的可靠度。在這論文中我們考慮最大可能分集結合技術及二種低複雜的次佳分集結合技術,這二種技術分別為平方率配合適應性增益控制的結合技術及平方率配合等增益結合技術。

模擬結果顯示,我們所建議的系統在結合分集及編碼的增益之後,可以提供非常好的錯誤更正能力來對抗部分頻帶雜訊的干擾。
The performance of low-density parity-check (LDPC) codes is investigated for fast frequency hopping / binary frequency shift keying (FFH/BFSK) in partial-band noise jamming channels. We employ different diversity combining schemes to compute the codeword bit decision reliability. In this paper, we consider the maximum-likelihood (ML) diversity combining scheme and two low-complexity suboptimal diversity combining schemes: square-law with adaptive gain control (AGC) combining and square-law with equal gain combining.

Simulation results show that, by combining both of the diversity and coding gain, our proposed system can provide excellent performance against partial-band noise jamming.
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . II
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . III
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . VI
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization of the Thesis . . . . . . . . . . . . . . . . . . .3
2. Spread Spectrum Techniques . . . . . . . . . . . . . . . . . . . 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.2 Noncoherent Fast Frequency Hopping . . . . . . . . . . . . . . .6
2.3 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . . 10
2.5 Maximum A Posteriori Criterion . . . . . . . . . . . . . . . . .11
2.6 Optimum Receiver for M-ary Orthogonal Signals . . . . . . . . . 12
2.7 The Maximum Likelihood Decision . . . . . . . . . . . . . . . . 14
2.8 Diversity Combining Schemes . . . . . . . . . . . . . . . . . . 17
2.8.1 ML Diversity Combining Scheme . . . . . . . . . . . . . . . . 17
2.8.2 AGC Diversity Combining Scheme . . . . . . . . . . . . . . . .19
2.8.3 Equal Gain Diversity Combining Scheme . . . . . . . . . . . . 20
3. Low-Density Parity-Check Codes . . . . . . . . . . . . . . . . . 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . .22
3.2 Linear Block Codes . . . . . . . . . . . . . . . . . . . . . . .23
3.3 Tanner Graph . . . . . . . . . . . . . . . . . . . . . . . . . .26
3.4 Construction of LDPC Codes . . . . . . . . . . . . . . . . . . .27
3.5 Log-Likelihood Ratios . . . . . . . . . . . . . . . . . . . . . 28
3.6 Iterative SISO Decoding . . . . . . . . . . . . . . . . . . . . 28
3.7 LLR for Variable Node Message . . . . . . . . . . . . . . . . . 30
3.8 LLR for Check Node Message . . . . . . . . . . . . . . . . . . .32
3.9 Sum-Product Algorithm . . . . . . . . . . . . . . . . . . . . . 35
3.10 Boxplus Operator . . . . . . . . . . . . . . . . . . . . . . . 36
4. LDPC for FFH/BFSK Systems . . . . . . . . . . . . . . . . . . . .39
5. Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 42
6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

List of Figure
1.1 A (10,2,4) LDPC code. There are 10 variable nodes
and 5 check nodes, dv is 2 and dc is 4. . . . . . . . . . 2
2.1 Tranmitted signal for an FFH/QFSK spread spec-
trum system. . . . . . . . . . . . . . . . . . . . . . . 7
2.2 FFH/QFSK receiver down-converter output. . . . . . 7
2.3 Demodulation of BFSK signals for noncoherent de-
tection . . . . . . . . . . . . . . . . . . . .. . . . 13
2.4 Block diagram of ML diversity combining scheme. . . 17
2.5 Block diagram of AGC diversity combining scheme. . 19
2.6 Block diagram of EG diversity combining scheme. . . 20
3.1 A Tanner graph for a LDPC codes . . . . . . . . . . 27
3.2 ”Soft-in / soft-out” decoder . . . . . . . . . . . . . . 29
3.3 Update the variable node. . . . . . . . . . . . . . . . 31
3.4 Update the variable node. . . . . . . . . . . . . . . . 32
3.5 Update the check node. . . . . . . . . . . . . . . . . . 33
3.6 Update the check node. . . . . . . . . . . . . . . . . . 34
3.7 Performance compartion between tanh−1 (∗) and box-
plus . . . . . .. . . . . . . . . . . . 38
4.1 Block diagram of the LDPC coded FFH/BFSK system 39
4.2 Partial-band noise jamming. . . . . . . . . . . . . . . 40
5.1 Performance comparison between different diversity
combining schemes: L = 5, = 0.7, SNR = 13.35 dB. 42
5.2 Performance comparison between different diversity
combining schemes: L = 5, = 0.9, SNR = 13.35 dB. 43
5.3 Comparison between AGC and ML scheme with dif-
ferent , where L = 5 ( for BER = 10−3 ). . . . . . . 44
5.4 Performance comparison between different with AGC
diversity combining scheme: SNR = 13.35, L = 7. . . 45
5.5 Performance comparison between different with ML
diversity combining scheme: SNR = 13.35, L = 7. . . 46
5.6 Performance comparison between different diversity
order: = 0.7, ML diversity combining scheme, SNR
= 13.35 dB. . . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Performance comparison between different diversity
order and with ML diversity combining scheme when
BER = 10−3. . . . . . . . . . . . . . . . . . . . . . . 48
[1] R. G. Gallager. Low-Density Parity-Check Codes. MIT Press, Cambridge, 1963.

[2] D. J. C. Mackay. Good codes base on very sparse matrices. IEEE Trans. Inform. Theory, 45(2):399–431, Mar. 1999.

[3] D. J. C. Mackay and R. M. Neal. Near shannon limit performance of low density parity check codes. Electron. Lett., 32(18):1645–1646, Aug. 1996.

[4] S. Y. Chung, G. D. Forney, Jr., T. J. Richardson, and R. Urbanke. On the design of low-density parity-check codes within 0.0045 db of the shannon limit. IEEE Commun. Lett., 5(2):58–60, Feb. 2001.

[5] J. Hou, P. H. Siegel, and L. B. Milstein. Performance analysis and code optimization of low density parity-check codes on rayleigh fading channels. IEEE J. Select. Areas Commun., 19(5):924–934, May 2001.

[6] R. L. Peterson, R. E. Ziemer, and D. E. Borth. Introduction to SpreadSpectrum Communications. Prentice-Hall, Upper Saddle River, N.J., 1995.

[7] G. Li, Q. Wang, V. K. Bhargava, and L. J. Mason. Maximum likelihood diversity combining in partial-band noise. IEEE Trans. Commun., 46(12):1569–1574, Dec. 1998.

[8] J. S. Lee, R. H. French, and L. E. Miller. Probability of error analyses of a bfsk frequency-hopping system with diversity under partial-band jamming interference–part I : Performance of square-law linear combining soft decision receiver. IEEE Trans. Commun., 32(6):645–653, Jun. 1984.

[9] Harry L. Van Trees. Detection, Estimation, and Modulation Theory, Part I. John Wiley & Sons, Inc., N.Y., 2001.

[10] J. G. Proakis. Digital Communications, 4th ed. McGraw-Hill, N.Y., 2001.

[11] J. S. Lee, L. E. Miller, and Y. K. Kim. Probability of error analyses of a bfsk frequency-hopping system with diversity under partial-band jamming interference–part ii: Performance of square-law linear combining soft decision receiver. IEEE Trans. Commun., 32(12):1243–1250, Dec. 1984.

[12] S. Lin and D.J. Costello, Jr. Error Control Coding, Fundamentals and Applications, 2nd ed. Prentice Hall, Englewood Cliffs, N.J., 2004.

[13] J. Hagenauer, E. Offer, and L. Papke. Iterative decoding of binary block and convolution codes. IEEE Trans. Inform. Theory , 42(2):429–445, Mar. 1996.

[14] Hongwei Song and B.V.K. Vijaya Kumar. Low-density parity-check codes for partial response channels. IEEE Signal Processing Magazine, 21(1):56–66, Jan. 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文