|
1.Advanced Distributed Learning Project, (2002). http://www.adlnet.org/. 2.Agrawal, R. & Srikant, R. (1994). Fast algorithms for mining association rules in large database. Proceedings of the 20th International Conference on Very Large Data Bases, 487-499. 3.Agrawal, R. & Srikant, R. (1995). Mining sequential patterns. In P. S. Yu & A. L. P. Chen (Eds.), Proceedings of the 11th International Conference on Data Engineering (pp. 3- 14). IEEE Computer Society Press. 4.Aho, A. V. & Corasick, M. J. (1975). Efficient string matching: an aid to bibliographic search. Communications of the ACM, 18(6), 333-340. 5.Ausubel, D. P., Novak, J. D., & Hanesian, H. (1978). Educational psychology: A cognitive view, 2nd. New York, Holt, Rinehart and Winston. 6.Baffes, P. & Mooney, R. (1996). Refinement-based student modeling and automated bug library construction. Journal of Artificial Intelligence in Education, 7(1), 75- 116. 7.Burton, R. (1982). Diagnosing bugs in a simple procedural skill. In D. Sleeman & L. Brown (Eds.), Intelligent Tutoring Systems. London: Academic Press. 8.Chang, J. C., Chiu Y. P., Lin Y. Y. & Heh J. S. (2003). Using Knowledge Map to Diagnose Misconceptions in Real-Time Internet Tests. AACE World Conference on Educational Multimedia, Hypermedia & Telecommunications, Hawaii, USA, 1297-1300. 9.Cheng S. Y., Ma N. C. & Heh J. S. (2003). Nested State-transition Graph Model of User Behaviors. Proceedings of the 4th International Conference on Intelligent Data Engineering and Automated Learning, Hong Kong, China, 21-23 10.Clifford, M. (1981). Ed Syke: The frame game. Supplement to Practicing educational psychology. New York: Houghton Mifflin. 11.Dansereau, D. (1978). The development of a learning strategies curriculum. In H. O'Neil, Jr. (Ed.) Learning Strategies (pp. 1-29). New York: Academic Press. 12.Dong, Da-Xian (2002). Apply knowledge Map to develop physics Problem-Solving System. Unpublished master’s thesis, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C. 13.Dunham, M. H. (2003). Data Mining Introductory and Advanced Topics, New Jersey: Prentice-Hill.
14.Embretson S.E. & Reise, S.P. (2000). Item Response Theory for Psychologists. Lawrence Erlbaum Accociates, New Jersey: Mahwah. 15.Fayyad, U.M., Piatetsky-Shapiro, G., & Smyth P. (1996). From data mining to knowledge discovery: An overview. In U.M. Fayyad, G. Piatetsky-Shapiro, P.Smyth, and R. Uthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining, Menlo Park, Ca: AAAI Press/The MIT Press. 16.Gagné, E.D., Yekovich, Carol Walker, & Yekovich, Frank R. (1993). The Cognitive Psychology of Scholl Learning, New York: HarperCollins College Publishers. 17.Garofalakis, M., Rastogi, R., & Shim, K. (1999). SPIRIT: Sequential Pattern Mining with Regular Expression Constraint. Proceedings of the 25th International Conference on Very Large Data Bases, 223-234. 18.Grimaldi, R. P. (1994). Discrete and Combinatorial mathematics: an applied introduction. 3rd ed. (pp. 51-100). Massachusetts: Addison-Wesley. 19.Halbwachs, N. (1993) Synchronous Programming of Reactive Systems, Netherlands: Kluwer Academic. 20.Han, J. & Fu, Y. (1994). Dynamic Generation and Refinement of Concept Hierarchies for Knowledge Discovery in Database. In Proc. AAAI'94 Workshop on Knowledge Discovery in Databases (KDD'94), 157-168. 21.Heh J. S., Cheng S. Y. & Hsu C. K. (2005). Nested State-transition Graph Data Sequencing Model with Hierarchical Taxonomy through Radix Coding. Journal of Information Science and Engineering, 21(3), 579-605. 22.Holley, C. D., Dansereau, D. F., McDonald, B. A., Garland, J. C., & Collins, K.W. (1979). Evaluation of a hierarchical mapping technique as an aid to prose processing. Contemporary Educational Psychology, 4, 227-237. 23.Hoppe, U. (1994). Deductive error diagnosis and inductive error generalization for intelligent tutoring systems. Journal of Artificial Intelligence in Education, 5 (1), 27-49. 24.Hsu, C. K., Chang, J. C., Chang, M., Jehng, J. C. & Heh, J. S. (2002). An Approach for Automatic Learning and Inference by Knowledge Map. In International Conference on Computer Education. 25.IBM. Surfaid analytics. www.surfaid/dfw.ibm.com/web/index.html, 2000 26.Instructional Management Systems Project. (2002). http://www.imsproject.org/ 27.Jonassen, D. H., Reeves, T. C., Hong, N., Harvey, D., & Peters, K. (1997). Concept mapping as cognitive learning and assessment tools. Journal of Interactive Learning Research, 8(3/4), 289-308.
28.Jones, B. F., Palincsar, A. S., Ogle, D. S. & Carr, E. G. (1987). Strategic teaching and learning: cognitive instruction in the content areas. Alexandra, VA: Association for Supervision and Curriculum Development. 29.Keegan, D. (1996). Foundations of distance education. London: Routledge. 30.Klemettinen, M. (1999). A Knowledge Discovery Methodology for Telecommunication Alarm Network Databases, Unpublished doctoral dissertation, University of Helsinki, Finland. 31.Klir G., & Yuan B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications. New Jersey: Prentice Hall. 32.Kono, Y., Ikeda, M., & Mizoguchi, R. (1994). THEMIS: A nonmonotonic inductive student modeling system. Journal of Artificial Intelligence in Education, 5(3), 371- 413. 33.Kuo, R., Chang, M., Dong, D. X., Yang, K. Y. & Heh, J. S. (2002). Applying Knowledge Map to Intelligent Agents in Problem Solving Systems. World Conference on Educational Multimedia, Hypermedia & Telecommunications. 34.Langley, P. & Ohlson, S. (1984). Automated cognitive modeling. Proceedings of the National Conference on Artificial Intelligence, (pp. 193-197). Austin, Texas.
35.Mannila, H., Toivonen, H. & Verkamo, A. I. (1995). Discovering frequent episodes in sequences. Proceeding of the KDD conference, 210-215. 36.Marshall, S. P. (1995). Schemas in Problem Solving. New York: Cambridge University Press. 37.MathWorkers Inc. (1993)MATLAB statistics toolbox – User's Guide, MA: MathWorks Inc. 38.Mayer, R. E. (1991). Educational Psychology. Boston: Addison-Wesley. 39.McCreight, E. M. (1976). A space economical suffix tree construction algorithm. Journal of the ACM, 23(2), 262-297. 40.Moore, M. G. (1993). Is teaching like flying? A total systems view of distance education. American Journal of Distance Education. 7(1), 1-10. 41.Moore, K. L. (1993). Iterative learning control for deterministic systems. Advances in Industrial Control Series. London: Springer-Verlag. 42.Negnevitsky, M. (2002). Artificial Intelligence - A Guide to Intelligent Systems. Boston: Addison-Wesley. 43.Novak, J. D. & Gowin, D. B. (1984). Learning how to learn. New York: Cambridge University Press.
44.Peters, O. (1983). Distance teaching and industrial production: A comparative interpretation in outline. In D. Sewart, D. Keegan, & B. Holmberg (Eds.), Distance education: International Perspectives (pp. 95-113). London: Croom-Helm. 45.Preece, P. F. W. (1976). Mapping cognitive Structure: A comparison of methods. Journal of Educational Psychology, 68, 1-8 46.Quillian, M. R. (1966). Semantic memory. Unpublished doctoral dissertation, Carnegie Institute of Technology: Pittsburg. 47.Rabiner, L. R. & Juang, B. H. (1986). An Introduction to hidden Markov models. IEEE Acoustics, Speech & Signal Processing Magazine, 3(1), 4-16. 48.Robert, L. L. & Norman, E.G. (1995). Measurement and Assessment in Teaching. 7th ed. (pp. 115-198). Merrill: Prentice Hall. 49.Sison, R., Numao, M. & Shimura, M. (1998). Detecting Errors in Novice Programs via Unsupervised Multistrategy Learning. In Proceedings of the Fourth International Workshop on Multistrategy Learning, 135-140. 50.Sison R. and Shimura M. (1998). Student modeling and machine learning. International Journal of Artificial Intelligence in Education, 9(1-2), 128-158.
51.Sleeman, D. H., & Brown, J. S. (1982). Introduction: Intelligent tutoring systems. In D. H. Sleeman, & J. S. Brown (Eds.), Intelligent Tutoring Systems (pp. 1-11). London: Academic Press. 52.Sleeman, D., Hirsh, H., Ellery, I., & Kim, I. (1990). Extending domain theories: Two case studies in student modeling. Machine Learning, 5, 11-37. 53.Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improvements. Proceedings of the 5th International Conference on Extending Database Technology, 3-17. 54.Srivastava, J., Cooley, R., Deshpande, M., & Tan, P. (2000). Web usage mining: Discovery and applications of usage patterns form web data. SIGKDD Explorations, 1(2), 12-23. 55.Tung, A.K.H., Lu, H., Han, J., & Feng, L. (1999) Breaking the Barrier of Transactions: Mining Inter-Transaction Association Rules. Proceedings of the Fifth Conference International on Knowledge Discovery and Data Mining, San Diego, CA, 297–301. 56.Wedemeyer, C. A. (1977). Independent study. In A. S. Knowles (Ed.), The International Encyclopedia of Higher Education Boston: Northeastern University.
57.Wenger, E. (1987). Artificial Intelligence and Tutoring Systems. Los Altos: Morgan Kaufmann. 58.Xiao, Y. & Dunham, M. H. (2001). Efficient mining of traversal patterns. Data and Knowledge Engineering. 39(2), 191-214. 59.Zaiane, O. R. (1999). Resource and knowledge discovery from the internet and multimedia repositories. Technical report, Doctoral dissertation, Simon Fraser University: British Columbia. 60.Zaki, M. J. (1998). Efficient enumeration of frequent sequences. Proceedings of the 7th International Conference on Information and Knowledge Management. 68-75.
|