跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/11 19:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃哲揚
研究生(外文):Zhe-Yang Huang
論文名稱:超寬頻無線接收機之射頻CMOS前端電路設計
論文名稱(外文):Design of RF CMOS Front-End for Ultra-Wideband Wireless Receiver
指導教授:陳淳杰涂世雄涂世雄引用關係
指導教授(外文):Chun-Chieh ChenShih-Hsiung Tu
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:107
中文關鍵詞:超寬頻低雜訊放大器CMOS 前端電路直接序列超寬頻混頻器射頻積體電路多頻帶正交多工超寬頻系統迴授放大器電感耦合式電路電容耦合式電路射頻CMOS多級放大器
外文關鍵詞:CMOS Front-EndDS-UWBLNACapacitor-CoupledFeedback AmplifierMulti-Stage AmplifierRFICUWBMB-OFDMLow-Noise AmplifierRF-CMOSMixerInductor-CoupledUltra-Wideband
相關次數:
  • 被引用被引用:2
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
隨著無線通訊系統的發展,為因應影音及大量資料之無線傳輸,超寬頻無線通訊系統可達480Mb/s以上之超高速無線傳輸,並為近年來重要的發展領域。歸功於CMOS半導體技術的進展,射頻CMOS電路已提供系統晶片(SoC)整合之可行性。

本論文主要探討CMOS之射頻前端電路設計,其中共有七種低雜訊放大器(Low-Noise Amplifier)之設計,(1) UWB LNA with Multi-Stage LC-Tank (2) UWB LNA with Two-Stage Shunt Peaking (3) UWB LNA with Inductor-Coupling Resonated Loading (4) UWB LNA with Capacitor-Coupling Resonated Loading (5) UWB LNA with Inductor Loading (6) UWB LNA with RLC-Impedance Feedback (7) UWB LNA with Notch Filter,工作頻段設計於在3.1GHz-5.0GHz、6.0GHz-10.6GHz與3.1GHz-10.6GHz,可同時應用於直接序列超寬頻(DS-UWB)規格與多頻帶頻率正交多工(MB-OFDM)規格,本論文之寬頻低雜訊放大器使用多種設計方式,其中有多級放大器、迴授式放大器、電容耦合式放大器、電感耦合式放大器並以TSMC 0.18um與UMC 0.18um製成為主。應用於多頻帶頻率正交多工之射頻前端電路搭配一混頻器(Mixer),作為降低頻率之重要電路。
According to the development of wireless communication system, high data rate wireless transmission for video datum and audio datum is becoming significant. Ultra-wideband wireless communication system provides more than 480 Mb/s ultra high speed wireless communications and also is an important research area in academia and industry. Attributing to the progress of the CMOS semiconductor technology, RF-CMOS designs are providing a feasible solution for system on a chip (SoC).

The thesis mainly discussed with RF CMOS Front-End design including seven kinds of low-noise amplifiers. According to the priority, (1) UWB LNA with Multi-Stage LC-Tank (2) UWB LNA with Two-Stage Shunt Peaking (3) UWB LNA with Inductor-Coupling Resonated Loading (4) UWB LNA with Capacitor-Coupling Resonated Loading (5) UWB LNA with Inductor Loading (6) UWB LNA with RLC-Impedance Feedback (7) UWB LNA with Notch Filter The working frequency is design in 3.1GHz-5.0GHz, 6.0GHz-10.6GHz and 3.1GHz-10.6GHz. The designs are appropriate to the specification of DS-UWB and MB-OFDM. The low-noise amplifiers are using several types of designs containing multi-stage amplifier, feedback amplifier, capacitor-coupled amplifier, inductor-coupled amplifier which are implemented in TSMC 0.18um process and UMC 0.18um process. The front-end of MB-OFDM is collocated with a Mixer to decrease the frequency.
Contents

中文摘要 I
Abstract II
致謝 III
Contents IV
List of Figures VI
List of Equations XI
List of Tables XIII


Chapter 1 Introduction ………………………………………………...1
1.1 Introduction …………………………………………………....1
1.2 History of Ultra-Wideband …………………………………….2
1.3 The Definition of Ultra-Wideband ……………………………..3
(1) Common Definition of UWB ……………………………....3
(2) FCC Definition of UWB ……………………………….......4
1.4 MB-OFDM & DS-UWB ………………………………………6
1.5 Applications of Ultra-Wideband ……………………………….8

Chapter 2 Wireless Communication …………………………………..9
2.1 EM Spectrum …………………………………………………..9
2.2 Wireless Communication ……………………………………..10
2.3 Wireless Transceiver Architecture ……………………………11
(1) Super-Heterodyne Architecture …………………………...11
(2) Direct-Conversion Architecture …………………………..11
(3) Ultra-WideBand Architecture …………………………….12
I. MB-OFDM ……………………………………………..12
II. DS-UWB ………………………………………………13

Chapter 3 Low Noise Amplifier Design ……………………………...14
3.1 Noise ………………………………………………………….14
(1) Thermal Noise …………………………………………….14
(1a) Drain Current Noise ……………………………………..15
(1b) Gate Noise ……………………………………………….16
(2) Shot Noise ………………………………………………...17
(3) Flicker Noise ……………………………………………...17
3.2 Noise Factor & Noise Figure ………………………………....18
3.3 Noise Models …………………………………………………19
3.4 Linearity P1dB & IIP3 ………………………………………..22
3.5 Basic MOS Amplifier ………………………………………...25
(1) Common-Source Amplifier ……………………………….25
(2) Common-Gate Amplifier (Current Follower) …….………26
(3) Common-Drain Amplifier (Source Follower) ………….....27
3.6 Cascode Amplifier ……………………………………………28
3.7 Impedance Matching …………………………………………30

Chapter 4 Ultra-Wideband Front-End Design ……………………...32
4.1 Wideband Amplifier Design ………………………………….32
4.2 Wideband Impedance Matching ……………………………...34
(1) Resistive Termination …………………………………….34
(2) Common-Gate Configuration …………………………….34
(3) The Shunt-Shunt Feedback ……………………………….36
(4) Source Inductive Degeneration Impedance ………………37
4.3 Proposed UWB Low Noise Amplifiers ………………………38
(1) UWB LNA with Multi-Stage LC-Tank …………………...38
(2) UWB LNA with Two-Stage Shunt Peaking ………………47
(3) UWB LNA with Inductor-Coupling Resonated Loading ...55
(4) UWB LNA with Capacitor-Coupling Resonated Loading .60
(5) UWB LNA with Inductor Loading ……………………….68
(6) UWB LNA with RLC-Impedance Feedback ……………..72
(7) UWB LNA with Notch Filter ……………………………..76

Chapter 5 Conclusion …………………………………………………83

Reference ………………………………………………………………85



List of Figures

Fig. 1.2.1 History of Ultra-Wideband ………………………………………………...2
Fig. 1.3.1 General Bandwidth Definition ……….…………………………………….3
Fig. 1.3.2 General Definition of Ultra-Wideband …………………………………….3
Fig. 1.3.3 FCC Definition of Ultra-Wideband ………………………………………..4
Fig. 1.3.4 Power Emission Mask of UWB ……………………………………………4
Fig. 1.3.5 Comparison of Bandwidth & Power Emission (1) ………………………...5
Fig. 1.3.6 Comparison of Bandwidth & Power Emission (2) ………………………...5
Fig. 1.4.1 Motorola for Direct-Sequence-Code Division Multiple Access (DS-CDMA)
……….……………………………………………………………………...6
Fig. 1.4.2 Intel & TI for Multi-Band-Orthogonal Frequency Division Multiplexing (MB-OFDM) ……………………………………………………………….6
Fig. 1.4.3 Frequency Modulation ……………………………………………………..7
Fig. 1.4.4 Impulse Modulation ………………………………………………………..7
Fig. 1.4.5 Time Domain vs. Frequency Domain ……..……………………………….7
Fig. 1.5.1 Applications of UWB .……………….……………………………………..8


Fig. 2.1.1 Electromagnetic Spectrum …………………………………………………9
Fig. 2.1.2 Definitions about Microwave Frequency Range …………………………..9
Fig. 2.2.1 Wireless Transceiver ……………………………………………………...10
Fig. 2.3.1 Super-Heterodyne Transceiver ……………………………………………11
Fig. 2.3.2 Direct-Conversion Transceiver …………………………………………...12
Fig. 2.3.3 Ultra-Wideband Transceiver of MB-OFDM ……………………………...12
Fig. 2.3.4 Ultra-Wideband Transceiver of DS-UWB ………………………………..13


Fig. 3.1.1 Power delivered by the noisy resistor …………………………………….14
Fig. 3.1.2 Resistor Thermal Noise Models …………………………………………..15
Fig. 3.1.3 Drain Current Noise ………………………………………………………16
Fig. 3.1.4 Gate Noise Circuit Model ………………………………………………...16
Fig. 3.3.1 Noisy two-port driven by noisy source …………………………………...19
Fig. 3.3.2 Equivalent noise model …………………………………………………...19
Fig. 3.4.1 Third-Order Intermodulation ……………………………………………..23
Fig. 3.4.2 Third-Order Intermodulation to the Desired Channel …………………….23
Fig. 3.4.3 Input 3rd-order Intercept (IIP3) …………………………………………...23
Fig. 3.4.4 1-dB Compression Point (P-1dB) ………………………………………...24
Fig. 3.4.5 The Spurious-Free Dynamic Range (SFDR) ……………………………..24
Fig. 3.5.1 The Common-Source Amplifier Configuration …………………………..25
Fig. 3.5.2 Small Signal Model of the Common-Source Amplifier ………………….25
Fig. 3.5.3 Common-Gate Amplifier (Current Follower) ……………………………26
Fig. 3.5.4 Small Signal Model of the Common-Gate Amplifier ……………………26
Fig. 3.5.5 Common-Drain Amplifier (Source Follower) .…………………………...27
Fig. 3.5.6 Small Signal Model of the Common-Drain Amplifier …………………...27
Fig. 3.6.1 Cascode Amplifier ………………………………………………………..28
Fig. 3.6.2 Miller Effect ………………………………………………………………28
Fig. 3.7.1 S-Parameters ……………………………………………………………...30
Fig. 3.7.2 Input Impedance Matching with Source Degeneration Inductor …………30
Fig. 3.7.3 Input Matching with Inductor Lg …………………………………………31


Fig. 4.1.1 Multi-Stage Amplifier …………………………………………………….32
Fig. 4.1.2 Shunt-Peaked Amplifier …………………………………………………..32
Fig. 4.1.3 Bandwidth versus Q factor ………………………………………………..33
Fig. 4.1.4 Feedback Topology ……………………………………………………….33
Fig. 4.2.1 Resistive Termination ……………………………………………………..34
Fig. 4.2.2 Common-Gate Configuration …………………………………………….35
Fig. 4.2.3 terminated …………………………………………………………..35
Fig. 4.2.4 Shunt-Shunt Feedback Topology …………………………………………36
Fig. 4.2.5 Source Inductive Degeneration Impedance ………………………………37
Fig. 4.3.1.1 The Conventional Cascode LNA with LC-tank ………………………...38
Fig. 4.3.1.2 The Power Gain of cascade LNA with LC-tank ………………………..38
Fig. 4.3.1.3 Multi-Stage Amplifiers …………………………………………………39
Fig. 4.3.1.4 Circuit Topology of the Proposed UWB LNA ………………………….39
Fig. 4.3.1.5 Dominant Pole That Degrades the Bandwidth of UWB LNA ………….39
Fig. 4.3.1.6 Equivalent Circuit between Stage2 and Stage3 Illustrating the
Time-Constant Compensation Technique ……………………………...40
Fig. 4.3.1.7 Limiting Effect of Gain and Bandwidth Product on the Frequency
Response of UWB LNA ………………………………………………..40
Fig. 4.3.1.8 Wideband Impedance Matching (a) Resistor Terminated at Input
(b) Common-Gate Amplifier …………………………………………...41
Fig. 4.3.1.9 Input Return Loss ……………………………………………………….42
Fig. 4.3.1.10 Output Return Loss ……………………………………………………42
Fig. 4.3.1.11 Power Gain …………………………………………………………….42
Fig. 4.3.1.12 Isolation ………………………………………………………………..42
Fig. 4.3.1.13 The Noise Figure ………………………………………………………42
Fig. 4.3.1.14 Input 1dB Compression Point …………………………………………42
Fig. 4.3.1.15 Layout …………………………………………………………………43
Fig. 4.3.1.16 Photo …………………………………………………………………..43
Fig. 4.3.1.17 Circuit Topology of the Modified UWB LNA ………………………...44
Fig. 4.3.1.18 Input Return Loss …………………..………………………………….45
Fig. 4.3.1.19 Output Return Loss ……………………………………………………45
Fig. 4.3.1.20 Power Gain …………………………………………………………….45
Fig. 4.3.1.21 Isolation ………………………………………………………………..45
Fig. 4.3.1.22 Noise Figure ………...…………………………………………………45
Fig. 4.3.1.23 Input 1dB Compression Point …………………………………………45
Fig. 4.3.1.24 Layout …………………………………………………………………46
Fig. 4.3.1.25 Photo …………………………………………………………………..46
Fig.4.3.2.1 Inductive degeneration …………………………………………………..47
Fig.4.3.2.2 Small-signal of the input network ……………………………………….47
Fig.4.3.2.3 Shunt-peaked amplifier ………………………………………………….48
Fig.4.3.2.4 The proposed UWB LNA ……………………………………………….48
Fig. 4.3.2.5 Input Return Loss ……………………………………………………….49
Fig. 4.3.2.6 Output Return Loss …………………………………………..…………49
Fig. 4.3.2.7 Power Gain ………………………………………………………..…….49
Fig. 4.3.2.8 Isolation …………………………………………………………………49
Fig. 4.3.2.9 Noise Figure ….........................................................................................49
Fig. 4.3.2.10 Input 1dB Compression Point …………………………………………49
Fig. 4.3.2.11 the variation of Ctune ………………………………………………….50
Fig. 4.3.2.12 Layout …………………………………………………………………50
Fig. 4.3.2.13 Photo …………………………………………………………………..50
Fig.4.3.2.14 Modified UWB LNA …………………………………………………..52
Fig. 4.3.2.15 Input Return Loss ………………………….…………………………..53
Fig. 4.3.2.16 Output Return Loss …............................................................................53
Fig. 4.3.2.17 Power Gain ….........................................................................................53
Fig. 4.3.2.18 Isolation …..……………………………………………………………53
Fig. 4.3.2.19 Noise Figure ….......................................................................................53
Fig. 4.3.2.20 Input 1dB Compression Point …………………………………………53
Fig. 4.3.2.21 Layout …………………………………………………………………54
Fig. 4.3.2.22 Photo …………………………………………………………………..54
Fig. 4.3.3.1 Proposed UWB LNA with Inductor-Coupling Resonated Loading …….55
Fig. 4.3.3.2 Miller’s Theory …………………………………………………………56
Fig. 4.3.3.3 Wideband Input Impedance Matching ………………………………….56
Fig. 4.3.3.4 Gain Compensated ……………………………………………………...56
Fig. 4.3.3.5 Inductor-Coupling Resonated Loading …………………………………57
Fig.4.3.3.6 Input Return Loss ………………………………………………………..58
Fig.4.3.3.7 Output Return Loss ……………………………………………………...58
Fig.4.3.3.8 Power Gain ………………………………………………………………58
Fig.4.3.3.9 Isolation ………………………………………………………………….58
Fig.4.3.3.10 Noise Figure ……………………………………………………………58
Fig.4.3.3.11 Input 1-dB Compression Point …………………………………………58
Fig. 4.3.3.12 Layout ………………………………………………………................59
Fig. 4.3.3.13 Photo …………………………………………………………………..59
Fig. 4.3.4.1 Proposed Capacitor-Coupling Resonated LNA ………………………...60
Fig. 4.3.4.2 Small Signal Hybrid- Model of Input Matching Networks ………….60
Fig. 4.3.4.3 Band Pass Filter for Input Impedance Matching ……………………….62
Fig. 4.3.4.4 Cascode Amplifier with Impedance Load ……………………………....62
Fig. 4.3.4.5 Capacitor-Coupling Resonated Load …………………………………...63
Fig. 4.3.4.6 (a) Single Stage of Resonated Load …………………………………….63
(b) Frequency Response of Resonated Load …………………………...63
Fig. 4.3.4.7 Power gain of the capacitor-coupling resonated load …………………..64
Fig. 4.3.4.8 (a) Transition Frequency Below fL1 (b) Over Coupled …………………64
Fig. 4.3.4.9 (a) Transition Frequency Over fL1 (b) Under Coupled ………………….64
Fig.4.3.4.10 Input Return Loss ………………………………………………………65
Fig.4.3.4.11 Output Return Loss …………………………………………………….65
Fig.4.3.4.12 Power Gain ……………………………………………………………..65
Fig.4.3.4.13 Isolation ………………………………………………………………...65
Fig.4.3.4.14 Noise Figure ……………………………………………………………66
Fig.4.3.4.15 Input-Referred 1dB Compression Point ………………………………..66
Fig.4.3.4.16 Power Gain in Different Supply Voltage ………………………………66
Fig.4.3.4.17 Layout ………………………………………………………………….67
Fig.4.3.4.18 Photo …………………………………………………………………...67
Fig. 4.3.5.1 Proposed UWB LNA with Inductor Loading …………………………..68
Fig. 4.3.5.2 Wideband Input Impedance Matching ………………………………….69
Fig. 4.3.5.3 Gain Compensated ……………………………………………………...69
Fig.4.3.5.4 Input Return Loss ………………………………………………………..70
Fig.4.3.5.5 Output Return Loss ……………………………………………………...70
Fig.4.3.5.6 Power Gain ………………………………………………………………70
Fig.4.3.5.7 Isolation ………………………………………………………………….70
Fig.4.3.5.8 Noise Figure ……………………………………………………………..70
Fig.4.3.5.9 Input 1-dB Compression Point …………………………………………..70
Fig. 4.3.5.10 Layout …………………………………………………………………71
Fig. 4.3.5.11 Photo …………………………………………………………………..71
Fig.4.3.6.1 Proposed UWB Low-Noise Amplifier with RLC-Impedance Feedback ..72
Fig. 4.3.6.2 Miller’s Theory …………………………………………………………73
Fig. 4.3.6.3 Wideband Input Impedance Matching ………………………………….73
Fig. 4.3.6.4 Gain Compensated ……………………………………………………...73
Fig.4.3.6.5 Input Return Loss ………………………………………………………..74
Fig.4.3.6.6 Output Return Loss ……………………………………………………...74
Fig.4.3.6.7 Power Gain ………………………………………………………………74
Fig.4.3.6.8 Isolation ………………………………………………………………….74
Fig.4.3.6.9 Noise Figure ……………………………………………………………..74
Fig.4.3.6.10 Input Power Compression 1dB ………………………………………...74
Fig. 4.3.7.1 Proposed Low-Noise Amplifier for UWB System ……………………..76
Fig. 4.3.7.2 Cascode Amplifier with Shunt-Peaked Load …………………………...77
Fig. 4.3.7.3 Power Gain and Bandwidth V.S Quality Factor ………………………...78
Fig. 4.3.7.4 Wide Bandwidth Amplifier ……………………………………………..78
Fig. 4.3.7.5 Gain Compensated of Two Stages Amplifiers ………………………….79
Fig. 4.3.7.6 Notch Filter among First and Second Stage Amplifier …………………79
Fig. 4.3.7.7 Power Gain Caused by Notch Filter ……………………………………79
Fig. 4.3.7.8Input Return Loss ………………………………………………………..80
Fig. 4.3.7.9 Output Return Loss ……………………………………………………..80
Fig. 4.3.7.10 Power Gain …………………………………………………………….81
Fig. 4.3.7.11 Isolation ………………………………………………………………..81
Fig.4.3.7.12 NF & Noise Min ……………………………………………………….81
Fig.4.3.7.13 Input-Referred 1dB CP ………………………………………………...81


Fig. 5.1.1 Potential for UWB ………………………………………………………..83
Fig. 5.1.2 Comparison ……………………………………………………………….83



List of Equations

Eqn. 3.1.1 ……………………………………………………………………………14
Eqn. 3.1.2 ……………………………………………………………………………14
Eqn. 3.1.3 ……………………………………………………………………………15
Eqn. 3.1.4 ……………………………………………………………………………15
Eqn. 3.1.5 ……………………………………………………………………………15
Eqn. 3.1.6 ……………………………………………………………………………16
Eqn. 3.1.7 ……………………………………………………………………………16
Eqn. 3.1.8 ……………………………………………………………………………17
Eqn. 3.1.9 ……………………………………………………………………………17
Eqn. 3.2.1 ……………………………………………………………………………18
Eqn. 3.2.2 ……………………………………………………………………………18
Eqn. 3.2.3 ……………………………………………………………………………18
Eqn. 3.2.4 ……………………………………………………………………………18
Eqn. 3.3.1 ……………………………………………………………………………19
Eqn. 3.3.2 ……………………………………………………………………………19
Eqn. 3.3.3 ……………………………………………………………………………20
Eqn. 3.3.4 ……………………………………………………………………………20
Eqn. 3.3.5 ……………………………………………………………………………20
Eqn. 3.3.6 ……………………………………………………………………………21
Eqn. 3.3.7 ……………………………………………………………………………21
Eqn. 3.3.8 ……………………………………………………………………………21
Eqn. 3.3.9 ……………………………………………………………………………21
Eqn. 3.3.10…...………………………………………………………………………21
Eqn. 3.4.1 ……………………………………………………………………………22
Eqn. 3.4.2 ……………………………………………………………………………22
Eqn. 3.4.3 ……………………………………………………………………………22
Eqn. 3.4.4 ……………………………………………………………………………22
Eqn. 3.4.5 ……………………………………………………………………………22
Eqn. 3.5.1 ……………………………………………………………………………25
Eqn. 3.5.2 ……………………………………………………………………………26
Eqn. 3.5.3 ……………………………………………………………………………26
Eqn. 3.5.4 ……………………………………………………………………………27
Eqn. 3.5.5 ……………………………………………………………………………27
Eqn. 3.6.1 ……………………………………………………………………………29 Eqn. 3.6.2 ……………………………………………………………………………29 Eqn. 3.6.3 ……………………………………………………………………………29 Eqn. 3.6.4 ……………………………………………………………………………29 Eqn. 3.6.5 ……………………………………………………………………………29
Eqn. 3.7.1 ……………………………………………………………………………31
Eqn. 3.7.2 ……………………………………………………………………………31
Eqn. 3.7.3 ……………………………………………………………………………31
Eqn. 3.7.4 ……………………………………………………………………………31


Eqn. 4.1.1 ……………………………………………………………………………33
Eqn. 4.2.1 ……………………………………………………………………………35
Eqn. 4.2.2 ……………………………………………………………………………35
Eqn. 4.2.3 ……………………………………………………………………………37
Eqn. 4.3.1 ……………………………………………………………………………40
Eqn. 4.3.2 ……………………………………………………………………………40
Eqn. 4.3.3 ……………………………………………………………………………47
Eqn. 4.3.4 ……………………………………………………………………………56
Eqn. 4.3.5 ……………………………………………………………………………56
Eqn. 4.3.6 ……………………………………………………………………………61
Eqn. 4.3.7 ……………………………………………………………………………61
Eqn. 4.3.8 ……………………………………………………………………………61
Eqn. 4.3.9 ……………………………………………………………………………61
Eqn. 4.3.10 …………………………………………………………………………..61
Eqn. 4.3.11 …………………………………………………………………………..63
Eqn. 4.3.12 …………………………………………………………………………..63
Eqn. 4.3.13 …………………………………………………………………………..73
Eqn. 4.3.14 …………………………………………………………………………..73
Eqn. 4.3.15 …………………………………………………………………………..77
Eqn. 4.3.16 …………………………………………………………………………..77
Eqn. 4.3.17 …………………………………………………………………………..77
Eqn. 4.3.18 …………………………………………………………………………..77
Eqn. 4.3.19 …………………………………………………………………………..77
Eqn. 4.3.20 …………………………………………………………………………..79
Eqn. 4.3.21 …………………………………………………………………………..79



List of Tables

Table 4.3.1 UWB LNA with Multi-Stage LC-Tank …………………………………43
Table 4.3.2 UWB LNA with Multi-Stage LC-Tank …………………………………46
Table 4.3.3 UWB LNA with Two-Stage Shunt Peaking …………………………….51
Table 4.3.4 UWB LNA with Two-Stage Shunt Peaking …………………………….54
Table 4.3.5 UWB LNA with Inductor-Coupling Resonated Loading ……………….59
Table.4.3.6 UWB LNA with Capacitor-Coupling Resonated Loading at 1.0V
and 1.8V Supply Voltage …………………………………………...…..67
Table.4.3.7 UWB LNA with Inductor Loading at 1.0V and 1.8V …………………..71
Table.4.3.8 UWB LNA with RLC-Impedance Feedback …………….……………..75
Table 4.3.9 Performance Comparisons ………………………………………………81
Table 4.3.10 Comparisons of 3.1GHz - 10.6GHz UWB LNAs ……………………..82
Table 4.3.11 Comparisons of 3.1GHz - 5.0GHz UWB LNAs ………………………82
Reference

[1] FCC, “Final Rule of the Federal Communications Commission, 47 CFR Part 15,Sec. 503”, Federal Register, vol. 67,no. 95,May 2002.

[2] http://www.ieee802.org/15/pub/TG3a.html

[3] http://www.multispectral.com/

[4] http://www.intel.com/technology/comms/uwb/

[5] http://www.intel.com/technology/comms/uwb/download/W241_Paper.pdf

[6] Farid Dowla, “Handbook of RF and Wireless Technologies”, ELSEVIER, 2004.

[7] “XtremeSpectrum CFP Presentation,” IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs),
http://grouper.ieee.org/groups/802/15/pub/2003/Jul03/03153r9P802-15_TG3a-XtremeSpectrum-CFP-Presentation.ppt

[8] “Multi-band OFDM Physical Layer Proposal,” IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs),
http://grouper.ieee.org/groups/802/15/pub/2003/Jul03/03267r5P802_15_TG3a-Multi-band-OFDM-CFP-Presentation.ppt

[9] http://www.intel.com/technology/comms/uwb/download/wireless_pb.pdf

[10] http://www.intel.com/technology/comms/uwb/download/Ultra-Wideband.pdf

[11] Thomas H. Lee, ”The Design of COMS Radio-Frequency Integrated Circuits”, Cambridge, 2002.

[12] Behzad Razavi, “RF Microelectronics”, Prentice Hall, 1998.

[13] Won Namgoong, “A Channelized Digital Ultrawideband Receiver”,IEEE Transactions on wireless communications, Vol.2, No.3, pp.502-510, May 2003.

[14] Adel S. Sedra & Kenneth C. Smith, “Microelectronic Circuits”, Oxford University Press, 4th Edition, 1997.

[15] Behzad Razavi, “Design of Analog CMOS Integrated Circuits” McGraw-Hill, 2000.

[16] Phillip E. Allen, Douglas R. Holberg, Allen, “CMOS Analog Circuit Design”, Oxford University Press, 2nd Edition, 2002.

[17] David K. Cheng, “Field and Wave Electromagnetics”, Prentice Hall; 2 edition, 1989.

[18] Wei Meng Lim,Manh Anh Do,Jian Guo Ma amd Kiat Seng Yeo, “A Broadband CMOS LNA for WLAN Applications”, 2003 IEEE Conference on Ultra Wideband Systems and Technologies , Nov.16-19, pp.42-46, 2003.

[19] David Barras, Frank Ellinger, Heinz Jackel and Walter Hirt, “A Low Supply Voltage SiGe LNA for Ultra-Wideband Frontends”, IEEE Microwave and Wireless Components Letters, Vol. 14, No. 10, pp. 469 – 471, Oct. 2004.

[20]Chun-Chieh Chen, Zhe-Yang Huang, Che-Cheng Huang and Nan-Ku Lu, "Time-constant compensated LNA for ultra-wideband receiver," Proceedings of 2005 International Symposium on Intelligent Signal Processing and Communication Systems, 2005, pp. 561 - 564, Dec. 13-16, 2005

[21] Zhe-Yang Huang, Chun-Chieh Chen, Che-Cheng Huang and Nan-Ku Lu, "Design of CMOS low-noise amplifier for low-band ultra-wideband system," Asia-Pacific Microwave Conference Proceedings, 2005, vol. 5, Dec. 4-7, 2005.

[22] Connors, W.P., “Maximally Flat Bandwidth of Nondegenerate Parametric Amplifier with Double Tuned Signal Circuit and Single Tuned Idler Circuit”, IEEE Transactions on Microwave Theory and Techniques, Volume 13, Issue 2, pp. 251 – 252, Mar 1965.

[23] Egami, S.,“In-Line Signal Circuit for Broad-Band Parametric Amplifiers”, IEEE Transactions on Microwave Theory and Techniques, Volume 23, Issue 3, pp. 282 – 287, Mar 1975.

[24] Moneim Youssef, A.A., Sharaf, K., Ragaie, H.F., Marzouk Ibrahim, M., “VLSI design of CMOS image-reject LNA for 950-MHz wireless receivers”, 1st IEEE International Conference on Circuits and Systems for Communications, 2002, pp. 330 – 333, 26-28 June 2002.

[25] Jou, C.F., Kuo-Hua Cheng, Pang-Ruci Huang, Mei-Chien Chen, “Design of a fully integrated high linearity dual-band CMOS LNA”, Proceedings of the 2003 10th International Conference on IEEE Electronics, Circuits and Systems, 2003, Volume 3, pp. 978 - 981 Vol.3, 14-17 Dec. 2003.

[26] Benmansour, M., Mukund, P.R., ”A tuned wideband LNA in 0.25um IBM process for RF communication applications”, Proceedings 17th International Conference on VLSI Design, pp. 631 - 634 , 2004.

[27] Lavasani, S.H.M., Kiaei, S., “A new method to stabilize high frequency high gain CMOS LNA”, Proceedings of the 2003 10th International Conference on IEEE Electronics, Circuits and Systems, Volume 3, pp.982 - 985 Vol.3, 14-17 Dec. 2003.

[28] Tinella, C., Fournier, J.M., Haidar, J., “Noise contribution in a fully integrated 1-V, 2.5-GHz LNA in CMOS-SOI technology”, The 8th IEEE International Conference on Electronics, Circuits and Systems, 2001, Volume 3, 2-5 pp.1611 – 1614, Sept. 2001.

[29] Girlando, G., Ragonese, E., Italia, A., Palmisano, G., “Bipolar LNA design at different operating frequencies”, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003, Volume 1, pp. I-213 - I-216, 25-28 May 2003.

[30] Andrea Bevilacqua, and Ali M. Niknejad,” An Ultrawideband CMOS Low-Noise Amplifier for 3.1–10.6-GHz Wireless Receivers”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, Vol. 39, No. 12, pp.2259-2268, Dec 2004.

[31] Chih-Fan Liao, Shen-Iuan Liu, “A broadband noise-canceling CMOS LNA for 3.1-10.6-GHz UWB receiver”, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, pp.161 - 164, 18-21 Sept. 2005.

[32] B.-Y. Chang and C. F. Jou, "Design of a 3.1-10.6GHz low-voltage, low-power CMOS low-noise amplifier for ultra-wideband receivers," Asia-Pacific Microwave Conference Proceedings, 2005, vol. 2, Dec. 4-7, 2005.

[33] P. P. Ghosh and E. Xiao, "Design of a new CMOS low noise amplifier for ultra wide-band wireless receiver in 0.18um technology," 2005 IEEE International Conference on Ultra-Wideband, pp. 514 - 519, Sept. 5-8, 2005.

[34] Chang-Wan Kim, Min-Suk Kang, Phan Tuan Anh, Hoon-Tae Kim, and Sang-Gug Lee, “An Ultra-Wideband CMOS Low Noise Amplifier for 3–5-GHz UWB System”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, Vol. 40, No. 2, pp.544-547, Feb. 2005.

[35] Vishwakarma, S.; Sungyong Jung; Youngjoong Joo, ” Ultra wideband CMOS low noise amplifier with active input matching”, 2004 International Workshop on Ultra Wideband Systems, Joint with Conference on Ultrawideband Systems and Technologies. Joint UWBST & IWUWBS, pp. 415 – 419, 18-21 May 2004.

[36] Chang, C.-P.; Chuang, H.-R., “0.18 um 3-6 GHz CMOS broadband LNA for UWB radio”, Electronics Letters, Volume 41, Issue 12, pp.33 – 34, June 2005.

[37] C. Garuda, X. Cui, P.-C. Lin, S. J. Doo, P. Zhang, and M. Ismail, "A 3-5 GHz fully differential CMOS LNA with dual-gain mode for wireless UWB applications," 48th Midwest Symposium on Circuits and Systems, 2005, pp. 790 - 793, August 7-10, 2005.

[38] C.-P. Chang, C.-C. Yen, and H. R. Chuang, "A 0.18um 2.4~6GHz CMOS Broadband Differential LNA for WLAN and UWB Receiver," 2005 European Microwave Conference, vol. 3, pp. 1591 - 1594, Oct. 4-6, 2005.

[39] J. Lee and J. D. Cressler, "Analysis and design of an ultra-wideband low-noise amplifier using resistive feedback in SiGe HBT technology," IEEE Transactions on Microwave Theory and Techniques, vol. 54, pp. 1262 - 1268, March 2006.

[40] F. S. Lee and A. P. Chandrakasan, "A BiCMOS ultra-wideband 3.1-10.6GHz front-end," Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005, pp. 1591 - 1594, Sept. 18-21, 2005.

[41] X. Duo, L.-R. Zheng, M. Ismail, and H. Tenhunen, "Broadband CMOS LNAs for IR-UWB receiver," The 23rd NORCHIP Conference, 2005, pp. 273 - 276, Nov. 21-22, 2005.

[42] F. Touati, "Design of 0.35um SiGe LNAs for UWB communications systems," The 16th International Conference on Microelectronics, 2004., pp. 37 - 40, Dec. 6-8, 2004.

[43] B. Shi and Y. W. Chia, "Design of a SiGe low-noise amplifier for 3.1-10.6 GHz ultra-wideband radio," Proceedings of the 2004 International Symposium on Circuits and Systems, 2004., vol. 1, pp. I-101 - I-104, May 23-26, 2004.

[44] Y. Wang, J. S. Duster, and K. T. Kornegay, "Design of an ultra-wideband low noise amplifier in 0.13um CMOS," IEEE International Symposium on Circuits and Systems, 2005, vol. 5, pp. 5067 - 5070, May 23-26, 2005.

[45] H. Doh, Y. Jeong, S. Jung, and Y. Joo, "Design of CMOS UWB low noise amplifier with cascode feedback," The 47th Midwest Symposium on Circuits and Systems, 2004, vol. 2, pp. II-641 - II-644 vol.2, July 25-28, 2004.

[46] R. Salerno, M. Tiebout, H. Paule, M. Streibl, C. Sandner, and K. Kropf, "ESD-protected CMOS 3-5 GHz wideband LNA+PGA design for UWB," Proceedings of the 31st European Solid-State Circuits Conference, 2005., pp. 219 - 222, Sept. 12-16, 2005.

[47] A. Bevilacqua, C. Sandner, A. Gerosa, and A. Neviani, "A fully integrated differential CMOS LNA for 3-5-GHz ultrawideband wireless receivers," Microwave and Wireless Components Letters, IEEE, vol. 16, pp. 134 - 136, March 2006.

[48] A. Ismail and A. A. Abidi, "A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network," IEEE Journal of Solid-State Circuits, vol. 39, pp. 2269 - 2277, Dec. 2004.

[49] B. Shi and M. Y. W. Chia, "A 3.1-10.6 GHz RF front-end for multiband UWB wireless receivers" 2005 IEEE Radio Frequency integrated Circuits Symposium, 2005, pp. 343 - 346, June 12-14, 2005.

[50] J. Lee and J. D. Cressler, "A 3-10 GHz SiGe resistive feedback low noise amplifier for UWB applications," IEEE Radio Frequency integrated Circuits Symposium, 2005, pp. 545 - 548, June 12-14, 2005.

[51] Y.-C. Chen and C.-N. Kuo, "A 6-10-GHz ultra-wideband tunable LNA," IEEE International Symposium on Circuits and Systems, 2005, vol. 5, pp. 5099 - 5102 Vol. 5, May 23-26, 2005.

[52] S.-C. Chen, R.-L. Wang, M.-L. Kung, and H.-C. Hung, "An integrated CMOS low noise amplifier for ultra wide band applications," vol. 2, pp. 1354 - 1357 vol.2, June 13-16, 2005.

[53] G. Cusmai, M. Brandolini, P. Rossi, and F. Svelto, "An interference robust 0.18um CMOS 3.1-8GHz receiver front-end for UWB radio " Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005, pp. 157 - 160, Sept. 18-21, 2005.

[54] J. Bergervoet, K. Harish, G. van der Weide, D. Leenaerts, R. van de Beek, H. Waite, Y. Zhang, S. Aggarwal, C. Razzell, and R. Roovers, "An interference robust receive chain for UWB radio in SiGe BiCMOS," 2005 IEEE International Solid-State Circuits Conference, 2005, vol. 1, pp. 200 - 593, Feb. 6-10, 2005.

[53]R. Roovers, D. M. W. Leenaerts, J. Bergervoet, K. S. Harish, v. d. Beek, R.C.H., G. van der Weide, H. Waite, Y. Zhang, S. Aggarwal, and C. Razzell, "An interference-robust receiver for ultra-wideband radio in SiGe BiCMOS technology," IEEE Journal of Solid-State Circuits, vol. 40, pp. 2563 - 2572, Dec. 2005.

[54] J. Lerdworatawee and W. Namgoong, "Low noise amplifier design for ultra-wideband radio," Proceedings of the 2003 International Symposium on Circuits and Systems, 2003, vol. 1, pp. I-221 - I-224 vol.1, May 25-28, 2003.

[55] C.-C. Wu, M.-F. Chou, W.-S. Wuen, and K.-A. Wen, "A low power CMOS low noise amplifier for ultra-wideband wireless applications," IEEE International Symposium on Circuits and Systems, 2005, vol. 5, pp. 5063 - 5066, May 23-26, 2005.

[56] C.-C. Sung, M.-F. Chou, C.-C. Wu, C.-S. Chen, K.-A. Wen, and C.-Y. Chang, "Low power CMOS wideband receiver design," The 16th International Conference on Microelectronics, 2004, pp. 287 - 290, Dec. 6-8, 2004.

[57] F. Ellinger, D. Barras, M. Schmatz, and H. Jackel, "A low power DC-7.8 GHz BiCMOS LNA for UWB and optical communication," IEEE MTT-S International Microwave Symposium Digest, 2004, vol. 1, pp. 13 - 16 Vol.1, June 6-11, 2004.

[58] D. Barras, F. Ellinger, H. Jackel, and W. Hirt, "A low supply voltage SiGe LNA for ultra-wideband frontends," Microwave and Wireless Components Letters, IEEE, vol. 14, pp. 469 - 471, Oct. 2004.

[59] J. Lerdworatawee and W. Namgoong, "Low-noise amplifier design for ultrawideband radio," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, pp. 1075 - 1087, June 2004.

[60] M.-D. Tsai, K.-Y. Lin, and H. Wang, "A 5.4-mW LNA using 0.35um SiGe BiCMOS technology for 3.1-10.6-GHz UWB wireless receivers," IEEE Radio Frequency Integrated Circuits Symposium, 2005, pp. 335 - 338, June 12-14, 2005.

[61] H. Zheng, S. Z. Lou, L. Leung, and H. C. Luong, "RF system architectures and circuit techniques for wideband transceivers," 2005 IEEE International Workshop on Radio-Frequency Integration Technology: Integrated Circuits for Wideband Communication and Wireless Sensor Networks, 2005, pp. 30 - 37, Nov. 30-Dec. 2, 2005.

[62] S. B. T. Wang, A. M. Niknejad, and R. W. Brodersen, "A sub-mW 960-MHz ultra-wideband CMOS LNA," 2005 IEEE Radio Frequency integrated Circuits Symposium, 2005, pp. 35 - 38, June 12-14, 2005.

[63] H.-J. Lee, D. S. Ha, and S. S. Choi, "A systematic approach to CMOS low noise amplifier design for ultrawideband applications," IEEE International Symposium on Circuits and Systems, 2005, vol. 4, pp. 3962 - 3965, May 23-26, 2005.

[64] S. Iida, K. Tanaka, H. Suzuki, N. Yoshikawa, N. Shoji, B. Griffiths, D. Mellor, F. Hayden, I. Butler, and J. Chatwin, "A 3.1 to 5 GHz CMOS DSSS UWB transceiver for WPANs," 2005 IEEE International Solid-State Circuits Conference, 2005, vol. 1, pp. 214 - 594, Feb. 6-10, 2005.

[65] A. Ismail and A. Abidi, "A 3.1 to 8.2 GHz direct conversion receiver for MB-OFDM UWB communications," 2005 IEEE International Solid-State Circuits Conference, 2005, pp. 208 - 593 Vol. 1, Feb. 6-10, 2005.

[66] T. Terada, S. Yoshizumi, Y. Sanada, and T. Kuroda, "Transceiver circuits for pulse-based ultra-wideband," Proceedings of the 2004 International Symposium on Circuits and Systems, 2004, vol. 4, pp. IV - 349-52 Vol.4, May 23-26, 2004.

[67] D. Maxwell, S. Jung, H. Doh, J. Gao, and Y. Joo, "A two-stage cascode CMOS LNA for UWB wireless systems," 48th Midwest Symposium on Circuits and Systems, 2005, pp. 627 - 630, August 7-10, 2005.

[68] Y. Park, R. Mukhopadhyay, A. Wakejima, K. Lim, C.-H. Lee, and J. Laskar, "Ultra-wideband (UWB) RF front-end module implementation for multi-band OFDM system," 2005 IEEE MTT-S International Microwave Symposium Digest, pp. 1817 - 1874, June 12-17, 2005.

[69] A. Bevilacqua and A. M. Niknejad, "An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receivers," 2004 IEEE International Solid-State Circuits Conference, 2004, vol. 1, pp. 382 - 533, Feb. 15-19, 2004.

[70] M. Shen, T. Koivisto, T. Peltonen, L.-R. Zheng, E. Tjukanoff, and H. Tenhunerf, "UWB radio module design for wireless sensor networks," 23rd NORCHIP Conference, 2005, Nov. 21-22, 2005.

[71] M. Shen, T. Koivisto, T. Peltonen, L.-R. Zheng, E. Tjukanoff, and H. Tenhunen, "UWB transceiver circuits design for WPANs applications," International Symposium on Signals, Circuits and Systems, 2005, vol. 1, pp. 255 - 258 Vol. 1, July 14-15, 2005.

[72] M. Pelissier, F. Hameau, D. Morche, and J.-M. Fournier, "Wide band pulse matched LNA for low power architecture," 2005 IEEE International Conference on Ultra-Wideband, 2005., pp. 520 - 524, Sept. 5-8, 2005.

[73] S.-W. Chung, S.-Y. Lee, and K.-H. Park, "Wideband impedance matching of integrated antennas and CMOS low noise amplifiers for a multi-band UWB receiver," 2004 IEEE Radio and Wireless Conference, pp. 131 - 134, Sept. 19-22, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top