跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/05 18:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊朋騰
研究生(外文):Peng-Teng Yang
論文名稱:迴圈式聚合酶鏈鎖反應之微流體驅動控制
論文名稱(外文):Microfluid driving control for loop type polymerase chain reaction micro chip
指導教授:張耀仁張耀仁引用關係
指導教授(外文):Yao-Ren Zhang
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:70
中文關鍵詞:聚合酶連鎖反應.聚二甲基矽氧烷
外文關鍵詞:PCRPDMS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來利用微機電技術設計並製造聚合酶連鎖反應(PCR)的微晶片已成為研究的發展趨勢,一般常見到的PCR微晶片有反應腔式(Batch System)及連續流式(Continuous-Flow System)兩種,前者可以任意決定PCR反應次數但溫度控制複雜;後者固定溫度區塊提供精準PCR反應所需的溫度,但無法任意決定PCR反應的次數。迴圈式PCR晶片的設計則包含了前面兩種型式晶片的優點。晶片製作方面則是利用微機電技術先製作出SU-8的微結構,再利用PDMS翻模的技術製作出微流道,最後在接合上一層平坦的PDMS。晶片上包含迴圈微流道、驅動導管及3個進/出氣孔。迴圈式微流道為液體做循環運動的區域;3個進/出氣孔連接外部氣體驅動設備;導管則作為進/出氣孔跟迴圈微流道的連接。在氣體驅動,利用鋼瓶當作壓力源,並利用兩個壓力閥來控制壓力的大小,一個較高的壓力主要是用來推動液體,另一個較低的壓力用來阻擋液體使其不會經由導管流出迴圈式微流道外。在壓力的選用上面,高壓選擇範圍是由0.2 Kg/cm2到0.4 Kg/cm2,低壓則是由0.1 Kg/cm2到0.24 Kg/cm2。並各別以0.02 Kg/cm2微調的方式去找出較適當的壓力組合。並利用Labview控制電磁閥來控制驅動的順序及時間,使液體可以在三個溫度區內做循環的運動。
In recent years, the development of polymerase chain reaction (PCR) microchips using MEMS technologies has evoked great research interest. Up to date, there are two common types of PCR microchips: the batch system and the continuous-flow system. The former allows arbitrary reaction times, but the temperature control is complicated; while the latter can provide precisely controlled temperatures for PCR reaction, however, the reaction times cannot be arbitrarily determined. In this study, the proposed loop-type PCR microchip possesses their advantages. This chip was fabricated using MEMS technology. The micro structure was constructed by SU-8 and was then molded into micro channels using PDMS. In addition, another layer of PDMS was bonded to it. Thus, the loop-type PCR microchip has a micro loop-channel, 3 sets of driving conduits with valveless design in their intersections, and 3 air inlets. The air inlets are connected to external air servo system so that the microfluid can be manipulated to move in the loop-channel. A higher air pressure is used to drive microfluid and a lower pressure for preventing microfluid from flowing out of loop-channel. Experiments were performed with higher pressure ranging between 0.2 Kg/cm2 and 0.4 Kg/cm2 and lower pressure from 0.1 Kg/cm2 to 0.24 Kg/cm2 in order to find the best combination of pressure control. Furthermore, we utilized LabVIEW to design the driving control sequence of microfluid.
中文摘要...............................................................Ⅰ
ABSTRACT..................................................................Ⅱ
誌謝.........................................................................Ⅲ
目錄.........................................................................Ⅳ表目錄....................................................................Ⅵ
圖目錄......................................................................Ⅶ
第一章 序論.........................................................1
1.1 前言.....................................................................1
1.2 文獻回顧...........................................................2
1.2.1聚合酶鏈鎖反應微晶片....................................................2
1.2.2微流體驅動裝置..................................................4
1.3 研究動機與目的............................................................5
第二章 理論基礎及晶片設計...............................................7
2.1 PCR原理..................................................................7
2.2 PCR晶片設計............................................................10
2.2.1 晶片設計........................................................10
2.2.2 外接伺服器架構及工作原理...........................................13
第三章 晶片製作.......................................................19
3.1 晶片材料...........................................................19
3.1.1 SU-8...........................................................19
3.1.2 PDMS................................................................21
3.2 光學微影概述........................................................22
3.3 晶片製程.....................................................................34
第四章 結果與討論...................................................................43
4.1 實驗規劃...........................................................43
4.1.1 實驗目的........................................................43
4.1.2 實驗設備及流程...................................................44
4.2 結果與討論..........................................................46
第五章 結論與未來展望.................................................57
5.1結論...............................................................57
5.2 未來展望...............................................................58
參考文獻...................................................................59

表2-1:電磁閥時序表..................................................16
表3-1:SU8的物理及化學性質...........................................20
表3-2:三種光罩比較表.....................23
表3-3:顯影參數.........................................................38

圖2-1:溫度控制圖.........................................8
圖2-2:DNA變性................................................................9
圖2-3:DNA黏合...................................................................9
圖2-4:DNA延伸.........................................................9
圖2-5:晶片尺寸.......................................................12
圖2-6:晶片3D圖.......................................................12
圖2-7:晶片工作步驟..................................................13
圖2-8:外接伺服器架構圖...................................................14
圖2-9:電晶體圖.........................................................14
圖2-10:電路圖........................................................15
圖2-11:氣體管路接線圖..................................................17
圖2-12:電磁閥控制開關..................................................18
圖2-13:氣體及壓力閥........................................................18
圖3-1:玻璃光罩圖......................................................22
圖3-2:光阻塗佈旋轉器...................................................24
圖3-3:熱墊板進行光阻固化示意圖.......................................26
圖3-4:接觸式曝光系統...................................................27
圖3-5:近接式曝光系統...................................................28
圖3-6:光線繞射現象....................................................28
圖3-7:投影式曝光系統..................................................30
圖3-8:投影式曝光機概念圖..............................................31
圖3-9:駐波效應.........................................................32
圖3-10:晶片製作流程圖.................................................34
圖3-11:熱墊板.........................................................36
圖3-12:旋塗機...........................................................36
圖3-13:曝光機.........................................................37
圖3-14:烘箱..........................................................39
圖3-15:接合流程圖....................................................41
圖3-16:SU-8結構圖...................................................41
圖3-17:PDMS晶片圖....................................................42
圖3-18:微流道2D圖....................................................42
圖4-1:交界處.........................................................43
圖4-2:實驗流程圖…...................................................45
圖4-3:PH跟PL的關係圖..................................................46
圖4-4:PL較低現象.....................................................47
圖4-5:PL較高現象......................................................47
圖4-6:PH 0.22 Kg/cm2;PL 0.12 Kg/cm2....................................48
圖4-7:PH 0.24 Kg/cm2;PL 0.1 Kg/cm2..................................48
圖4-8:PH 0.26 Kg/cm2;PL 0.12 Kg/cm2.......................................49
圖4-9:PH 0.28 Kg/cm2;PL 0.14 Kg/cm2.................................49
圖4-10:PH 0.30 Kg/cm2;PL 0.16 Kg/cm2................................50
圖4-11:PH 0.32 Kg/cm2;PL 0.18 Kg/cm2................................50
圖4-12:PH 0.34 Kg/cm2;PL 0.18 Kg/cm2..............................51
圖4-13:PH 0.36 Kg/cm2;PL 0.2 Kg/cm2.................................51
圖4-14:PH 0.38 Kg/cm2;PL 0.22 Kg/cm2...............................52
圖4-15:PH 0.4 Kg/cm2;PL 0.24 Kg/cm2...................................52
圖4-16:液體在A1區.....................................................53
圖4-17:液體通過交界口1...............................................54
圖4-18:液體到達A2區................................................54
圖4-19:液體通過交界口2...............................................55
圖4-20:液體到達A3區..................................................55
圖4-21:液體通過交界口1...............................................56
圖4-22:液體回到A1區..............................................56
[1] R. K. Saiki, S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich, and N. Arnheim, “Enzymatic Amplification of β-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia,” Science, vol.230, pp. 1350-1354,1985.
[2] M. A. Northrup, C. Gonzalez, D. Hadley, R. F. Hills, P. Landre, S. Lehew, R. Saiki, J. J. Sainsky, and R. Watson, “A MENS-based miniature DNA analysis system,” proceedings of 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX Stockholm, Sweden, pp. 25-29, 1995.
[3] S. Poser, T. Schulz, U. Dillner, V. Baier, J. M. Köhler, D. Schimkat, G. Mayer, and A. Siebert, “Chip elements for fast thermocycling”, Sensors and Actuators. A62, 672 , 1997.
[4] M. U. Kopp, A. J. Mello, and A. Manz, “Chemical Amplification: Continuous-Flow PCR on a Chip”, Science. 280, 1046 , 1998.
[5] B. C. Giordano, J. Ferrance, S. Swedberg, A. F. R. Huhmer, and J. P. Landers, “Polymerase Chain Reaction in Polymeric Microchips: DNA Amplification in Less Than 240 Seconds”, Anal Biochemistry. 291, 124, 2001.
[6] J. El-Ali, I.R. Perch-Nielsen, C.R. Poulsen, D.D. Bangb, P. Telleman, and A. Wolff, “Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor”, Sensors and Actuators A 110 3–10, 2004.
[7] T. Fukuba, T. Yamamoto, T. Naganuma, and T. Fujii, “Microfabricated flow-through device for DNA amplification towards in situ gene analysis”, Chemical Engineering Journal. 101, 151, 2004.
[8] R. Zengerle, J. Ulrich, S. Kluge, M. Richter, and A. Richter, “A bidirectional silicon micropump”, Sensors and Actuator. A50, 81, 1995.
[9] F. T. Hartley, “Micromachined peristaltic pump”, U.S. Patent No. 5705018, 1998.
[10] A. S. Dewa, and C. J. P. Sevrain, “Microfabricated fluidic devices”, U.S. Patent No. 5788468 , 1998.
[11] A. Olssen, G. Stemme, and E. Stemme, “A valve-less planar fluid pump with two pump chambers”, Sensors and Actuator A47, 549, 1995.
[12] C. P. Jen, and Y. C. Lin, “Design and simulation of bi-directional microfluid driving systemd”, J. Micromech. Microeng. 12, 115, 2002.
[13] 姚南光, 萬裕民, 陳啟楨, 洪隆裕, 王獻煌, 張四維, “微流體驅動方法及裝置”, 中華民國專利公告號 528836 , 2003.
[14] J. H. Daniel, “Silicon micro-chambers for DNA amplification”, Sensors and Actuators. A71, 81, 1998.
[15] 馬立人, 蔣中華, “生物晶片(第二版)”, 九州圖書文物有限公司, 2003.
[16] Hongkai Wu, Bo Huang, and Richard N. Zare, “Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding”, Lab Chip, 1393-1398, 2005.
[17] Byung-Ho Jo, Linda M. Van Lerberghe, Kathleen M. Motsegood, and David J. Beebe, “Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer”, Journal of Microelectromechanical System. vol. 9, No. 1, 2000.
[18] 莊達仁, “VLSI 製造技術”, 高立圖書有限公司, 2004.
[19] 徐泰然,朱銘祥, “微機電系統與微系統設計與製造”, 普林斯頓國際有限公司, 2003.
[20] 李秀琴, 徐照程, 李貽琳, 張聰民, 林建谷, 劉東明, “生物化學”, 高立圖書有限公司, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top