跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/21 10:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王膺傑
研究生(外文):Ying-Chieh Wang
論文名稱:生物晶片微流道熱壓成型特性之研究
論文名稱(外文):Study on Hot Embossing Characteristics in Micro-channel for Biochip
指導教授:陳夏宗陳夏宗引用關係
指導教授(外文):Shia-Chung Chen
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:96
中文關鍵詞:微流道微熱壓成型生物晶片
外文關鍵詞:Micro hot embossingMicro-channelBiochip
相關次數:
  • 被引用被引用:5
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
近年來由於微機電與生醫技術的快速發展,使得生物晶片的開發與應用越趨廣泛。應用高分子微成型技術製作具有微流道之生物晶片載具,取代以玻璃為基板生物晶片之製作,可達量產與降低生產成本之目的,進而提昇市場應用潛力。其中以微熱壓成型技術具有精度高、可成型面積大、高微流道深寬比、可批次生產與製程簡單等優點,而適合生物晶片之成型製造。
本研究中,設計出具有深與寬分別為30μm與100 μm之生物晶片,與具1/2、1、5/3與10/3之不同深寬比微流道,利用UV光將微流道圖案定義在SU-8光阻上,再以電鑄技術製作出具有高強度之鎳鈷合金母模。而後以厚度為1mm和直徑分別為70㎜與45㎜之PMMA與PC圓形薄板為基板配合3D顯微鏡量測,來探討微熱壓成型時壓印溫度、壓印力與壓印時間三項參數對微流道成型之影響。並針對不同深寬比之微流道成型作做一有系統之研究。
研究結果發現壓印力與壓印溫度對微流道成型正確性有很大之影響。提高壓印溫度會使高分子融膠的黏度降低而增加壓印深度與寬度之正確性,然成型週期亦會增長;而側壁脫模角之尺寸則不受壓印溫度之影響。微流道成型深度、寬度與側壁脫模角之複製正確性皆隨壓印力之增大而增加,同時亦達到一飽和值。壓印時間的增長,使高分子基材有足夠之時間來充填微流道,因此也可提高微流道之成型精確度。由不同深寬比微流道的成型可以發現微流道較小者,因成型所需融膠較少而較容易成型。但於生物晶片微流道系統與不同深寬比微流道之成型實驗,皆顯示較高之成型壓印溫度與壓印力會使產品薄化並容易黏模。
從本研究中,可充分了解以高分子為基材來成型具有微流道之生物晶片的微熱壓成型特性,相關研究成果並可提供研究人員或相關業者在成型生物晶片時之一參考準則。
Polymers have a great potential to be used for BioMEMS applications because many polymers are low cost, can be processed easily, and possess a broad range of physical and chemical properties.
In this study, the micro-channel array with 30μm in depth, 100μm in width and 50μm in pitch had designed. And another pattern with different aspect ratio had also designed. The UV light was used to transfer the pattern on SU-8 photoresist, and the Ni-Co based stamp was made by electroforming. PMMA and PC sheet of 70 ㎜ and 45㎜in diameter and 1 mm in thickness was utilized as molding substrate. 3D laser microscope was used to measure the width, depth and sidewall draft angle of the micro-channels.
The processing conditions studied include embossing force, embossing temperature, and embossing time. It was found that embossing force and embossing temperature are two key parameters affecting the molding accuracy significantly. Increasing embossing temperature will make the melt more soften and lower the viscosity of melt to reach good accuracy of imprint depth and width, but the cycle time also increased. All the accuracies of the imprint depth, width and draft angle increase with the applied embossing force until the associated dimensions reach saturated values. Increase of embossing time would increase the replication accuracy. Different aspect ratio micro-channels molding experimental shows that small channel is easily molding.
From this study, it will lead to a better understanding on the molding characteristics of hot embossing for the fabrication of micro-channels within a polymer substrate. The study also provides research worker a molding guideline for molded biochip devices.
目錄
中文摘要 ................................................................Ⅰ
英文摘要 ................................................................Ⅱ
致謝.....................................................................Ⅲ
目錄.....................................................................Ⅳ
表目錄...................................................................Ⅵ
圖目錄...................................................................Ⅶ
第一章 序論.............................................................1
1-1 前言..................................................................1
1-2 微機電系統與LIGA技術..................................................2
1-2-1 微機電系統簡介......................................................2
1-2-2 LIGA技術簡介........................................................3
1-3 微熱壓成型技術........................................................6
1-4 生物晶片..............................................................7
1-5 文獻回顧..............................................................8
1-6 研究動機與目的.......................................................18
1-7 本文架構.............................................................20
第二章 微熱壓成型實驗設備與方法........................................24
2-1 實驗設備.............................................................24
2-2 實驗材料.............................................................26
2-3 實驗方法.............................................................28
第三章 模具製作與微熱壓成型實驗........................................40
3-1 生物晶片微流道模具製作...............................................40
3-2 實驗設計與成型檢測方法...............................................42
3-3 微熱壓成型實驗.......................................................44
3-3-1 微熱壓成型實驗-壓印溫度實驗........................................44
3-3-2 微熱壓成型實驗-壓印力實驗..........................................45
3-3-3 微熱壓成型實驗-壓印時間實驗........................................45
3-3-4 不同深寬比微流道成型實驗...........................................45
第四章 實驗結果與討論..................................................55
4-1 微熱壓成型實驗-壓印溫度實驗結果......................................55
4-2 微熱壓成型實驗-壓印力實驗結果........................................56
4-3 微熱壓成型實驗-壓印時間實驗結果......................................58
4-4 不同深寬比微流道成型實驗結果.........................................60
4-5 微熱壓成型實驗結果討論...............................................62
第五章 結論與未來展望..................................................85
5-1 結論.................................................................85
5-2 未來展望.............................................................86
參考文獻.................................................................88
作者簡歷.................................................................96


表目錄
表1-1 三種微成型技術優缺點比較表........................................22
表3-1 生物晶片鎳鈷模具上的微流道尺寸....................................46
表3-2 不同深寬比鎳鈷模具上的微流道尺寸..................................46
表3-3 生物晶片微流道微熱壓成型參數表....................................46
表3-4 不同深寬比微流道微熱壓成型參數表..................................47



圖目錄
圖1-1 使用MEMS技術將質譜儀微小化........................................23
圖1-2 微熱壓成型示意圖..................................................23
圖2-1 EVG 520微熱壓成型機...............................................32
圖2-2 真空幫浦..........................................................32
圖2-3 冰水機冷卻系統....................................................33
圖2-4 上模加熱線圈......................................................33
圖2-5 加熱燈組..........................................................34
圖2-6 鈦合金模板........................................................34
圖2-7 空氣壓縮幫浦......................................................35
圖2-8 光阻旋塗機(MSC-300D) .............................................35
圖2-9 電熱板(YSC) ......................................................36
圖2-10 曝光機(SUSS) .....................................................36
圖2-11 微電鑄機(EFM-301) ................................................37
圖2-12 彩色雷射3D顯微鏡..................................................37
圖2-13 LIGA-like製程示意圖..............................................38
圖2-14 不同深寬比微流道設計..............................................38
圖2-15 生物晶片微流道系統................................................39
圖3-1 生物晶片微流道之光罩..............................................47
圖3-2 不同深寬比微流道之光罩............................................48
圖3-3 鎳鈷合金之生物晶片微流道金屬模具..................................48
圖3-4 鎳鈷合金不同深寬比微流道金屬模具..................................49
圖3-5 生物晶片微流道量測點A、B、C之位置.................................49
圖3-6 不同深寬比微流道量測點之位置......................................50
圖3-7 微流道的寬度、深度與側壁脫模角度定義..............................50
圖3-8 生物晶片微流道鎳鈷模具雷射3D顯微鏡檢測圖..........................51
圖3-9 不同深寬比微流道鎳鈷模具雷射3D顯微鏡檢測圖........................52
圖3-10 典型的微熱壓成型製程示意圖........................................53
圖3-11 成型基材與模具(左:上模板,右:下模板)..............................53
圖3-12 微熱壓成型自動化電腦參數設定畫面..................................54
圖4-1 微熱壓成型之生物晶片微流道系統....................................65
圖4-2 裁切後之微熱壓成型生物晶片微流道系統..............................65
圖4-3 微熱壓成型之不同深寬比微流道系統..................................66
圖4-4 壓印溫度對於微流道成型寬度的影響..................................66
圖4-5 壓印溫度對於微流道成型深度的影響..................................67
圖4-6 壓印溫度對於微流道側壁脫模角度的影響..............................67
圖4-7 壓印溫度高與壓印溫度低的成型比較..................................68
圖4-8 左邊成型產品薄化且面積變大,右邊為正常之成型產品..................69
圖4-9 壓印力對於微流道成型寬度的影響....................................69
圖4-10 壓印力對於微流道成型深度的影響....................................70
圖4-11 壓印力對於微流道側壁脫模角度的影響................................70
圖4-12 壓印力大與壓印力小的成型比較......................................71
圖4-13 壓印時間對於微流道成型寬度的影響..................................72
圖4-14 壓印時間對於微流道成型深度的影響..................................72
圖4-15 壓印時間對於微流道脫模角度的影響..................................73
圖4-16 壓印時間長與壓印時間短的成型比較..................................74
圖4-17 壓印力4kN時不同成型溫度對不同深寬比之微流道成型影響...............75
圖4-18 壓印力5kN時不同成型溫度對不同深寬比之微流道成型影響...............75
圖4-19 壓印力6kN時不同成型溫度對不同深寬比之微流道成型影響...............76
圖4-20 壓印力7kN時不同成型溫度對不同深寬比之微流道成型影響...............76
圖4-21 壓印力8kN時不同成型溫度對不同深寬比之微流道成型影響...............77
圖4-22 左邊成型產品薄化且面積變大,右邊為正常之成型產品..................77
圖4-23 成型溫度160℃時不同成型壓印力對不同深寬比之微流道成型影響.........78
圖4-24 成型溫度170℃時不同成型壓印力對不同深寬比之微流道成型影響.........78
圖4-25 成型溫度180℃時不同成型壓印力對不同深寬比之微流道成型影響.........79
圖4-26 成型溫度190℃時不同成型壓印力對不同深寬比之微流道成型影響.........79
圖4-27 成型溫度200℃時不同成型壓印力對不同深寬比之微流道成型影響.........80
圖4-28 成型時壓印溫度過低而無法完全將模具押入材料中來成型................80
圖4-29 成型時因壓印力太小而無法迫使融膠流動到角落來成型..................81
圖4-30 壓印時間對於成型的影響............................................82
圖4-31 微熱壓成型時壓印時間不足而導致成型不完全..........................83
圖4-32 成型條件不足與成型條件足夠之比較..................................84
參考文獻
1.Paul Gottehrer, Fundamentals of Microfabrication, CRC, (1997).
2.Malti Goel, “Recent developments in electroceramics:MEMS applications for
energy and environment”, Ceramics International, Vol.30, pp.1147-1154
(2004).
3.A. Arshak, K. Arshak, D. Waldron, et al., “Review of the potential of a
wireless MEMS and TFT microsystems for the measurement of pressure in the GI
tract”, Medical Engineering & Physics,(2005).
4.J.H. Daniel, R.A. Street, M. Teepe, et al., “Large area MEMS:materials
issues and applications”, Materials Research Society, Vol.685E, pp.D2.5.1-
D2.5.6 (2001).
5.B. Bharat, “Micro/nanotribology and its applications to magnetic storage
devices and MEMS”, Tribology International, Vol. 28, pp.85-96 (1995).
6.S. Sriram and B. Bharat, “Micro/nanotribological studies of polysilicon and
SiC films for MEMS applications”, Wear, Vol.217, pp.251-261 (1998).
7.U. Beerschwinger, T. Albrecht and D. Mathieson, “Wear at microscopic scales
and light loads for MEMS applications”, Wear, Vol.181-183, pp.426-435
(1995).
8.Y. Hirata, “LIGA process-Micromachining technique using synchrotron
radiation lithography-And some industrial applications”, Nuclear
Instruments and Methods in Physics Research B, Vol.208, pp.21-26 (2003).
9.J. Hormes, J. Göttert, K. Lian, Y. Desta and L. Jian, “Materials for LIGA
and LIGA-based microsystems”, Nuclear Instruments and Methods in Physics
Research B, Vol.199, pp.332-34 1(2003).
10.C.K. Malek and S. Volker, “Applications of LIGA technology to precision
manufacturing of high-aspect-ratio micro-components and-systems:a review”,
Microelectronics Journal, Vol.35, pp.131-143 (2004).
11.H.R. Liu, M.J Vasde, J. Göettert and D.J. Beebe, “Investigation of the
LIGA process to fabricate microchannel plates”, Proceedings of IEEE
Internafional Conference on Solid-state Sensors and Actuators, pp.645-648
(1997).
12.Y. Cheng, B.Y. Shew, C.Y. Lin, D.H. Wei and M.K. Chyu, “Ultra-deep LIGA
process”, Nuclear Instruments and Methods in Physics Research Section
A,Vol.467-468, pp.1192-1197 (2001).
13.H. Becker and U. Heim, “Hot embossing as a method for the fabrication of
polymer high aspect ratio structures”, Sensors and Actuators, Vol.83,
pp.130-135 (2000).
14.H. Becker, U. Heim and O. Rötting, “The Fabrication of polymer high aspect
ratio structures with hot embossing for microfluidic applications”,
Proceedings of SPIE Conference on Microfluidic Devices and Systems II,
Vol.3877, pp.74-79 (1999).
15.H. Becker and W. Dietz, “Microfluidic devices for μ-TAS applications
fabricated by polymer hot embossing”, Proceedings of SPIE Conference on
Microfluidic Devices and Systems, Vol3515.pp.177-182 (1998).
16.S. Bodovitz, T. Joos and J. Bachmann, “Protein biochips:the calm before
the storm”, Drug Discovery Today: Targets, Vol.10, pp.283-287 (2005).
17.R. Bashir, “BioMEMS:state-of-the-art in detection, opportunities and
prospects”, Advanced Drug Delivery Reviews, Vol.56, pp.1565- 1586 (2004).
18.C. Timoney and R. Felder, “Biochip Technology of the Future-Today”,
Journal of the Association for Laboratory Automation, Vol. 4, pp.86-89
(1999).
19.W. Dua, Z. Xub, X. Ma, L. Song and E.M. Schneider, “Biochip as a potential
platform of serological interferon α2b antibody assay”, Journal of
Biotechnology, Vol.106, pp.87-100 (2003).
20.L.J. Kricka, “Microchips, microarrays, biochips and nanochips: personal
laboratories for the 21st century”, International Journal of Clinical
Chemistry and Applied Molecular Biology, Vol.307, pp. 219-223 (2001).
21.M. Campás and I. Katakis, “DNA biochip arraying, detectionand
amplification strategies”, Trends in Analytical Chemistry, Vol.23, pp.49-62
(2004).
22.X.C. Shan, R. Maeda and Y. Murakoshi, “Micro hot embossing for replication
of microstructures”, The Japan Society of Applied Physics, Vol.42, pp.3859-
3862 (2003).
23.B. Graö, A. Neyer, M. Johnck, D. Siepe, F. Eisenbeiö, G. Weber and R.
Hergenroder, “A new PMMA-microchip device for isotachophoresis with
integrated conductivity detector”, Sensors and Actuators B,Vol.72, pp.249-
258 (2001).
24.J. Narasimhan and I. Papautsky, “Polymer embossing tools for rapid
prototyping of plastic microfluidic devices”, Journal of Micromechanics and
Microengineering, Vol.14, pp.96-103 (2004).
25.J. Mizuno, T. Harada, T. Glinsner, et al., “Fabrications of micro-channel
device by hot emboss and direct bonding of PMMA”, Proceedings of IEEE
International Conference on MEMS, NANO and Smart Systems (ICMENS), pp.24-27
(2004).
26.M. Heckele and W.K. Schomburg, “Review on micro molding of thermoplastic
Polymers”, Journal of Micromechanics and Microengineering, Vol.14, pp.R1-
R14 (2004).
27.M. Heckele, “Hot embossing - A flexible and successful replication
technology for polymer MEMS”, Proceedings of SPIE on Microfluidics,
BioMEMS, and Medical Microsystems II, Vol.5345, pp.108-117 (2004).
28.G.B. Lee, S.H. Chen, G. Ruey, et al., “Microfabricated plastic chips by
hot embossing methods and their applications for DNA separation and
detection”, Sensors and Actuators B, Vol.75, pp.142-148 (2001).
29.Z. Chen, Y. Gao, J. Lin, R. Su, and Y. Xie, “Vacuum-assisted thermal
bonding of plastic capillary electrophoresis microchip imprinted with
stainless steel template”, Journal of Chromatography A, pp.239-245 (2004).
30.Y. Zhao and T. Cui, “Fabrication of high-aspect-ratio polymer-based
electrostatic comb drives using the hot embossing technique”, Journal of
Micromechanics and Microengineering, Vol.13, pp.430-435 (2003).
31.S.M. Ford, B. Kar, S. McWhorter, et al., “Microcapillary electrophoresis
devices fabricated using polymeric substrates and X-ray lithography”,
Journal of Microcolumn Separations, Vol.9, pp.413-422 (1998)
32.黃冠瑞,“高效能微流體晶片之設計製作與其在生物醫學之應用”,國立成功大學工程科
學究所碩士論文(2000)。
33.H. Becker, W. Ehrfe1d and R. Pommersheim, “ Multichannel arrays on polymer
substrates - towards a disposable proteomics chip”, Proceedings of SPIE on
Design, Test, and Microfabrication of MEMS and MOEMS, Vol. 3680, pp.728-733
(1999).
34.A.E. Guber, M. Heckele, D. Herrmann, et al., “Microfluidic lab-on-a-chip
systems based on polymers—fabrication and application”, Chemical
Engineering Journal, Vol.101, pp.447-453 (2004).
35.W.W.Y. Chow, K.F. Lei, G. Shi, W.J. Li, and Q. Huang, “Micro fluidic
channel fabrication by PDMS-interface bonding”, Proceedings of SPIE on
Biomems and Nanotechnology, Vol.5275, pp.141-148 (2004).
36.O. Rötting, W. Röpke, H. Becker and C. Gärtner, “Polymer microfabrication
technologies”, Microsystem Technologies, Vol.8, pp.32-36 (2002).
37.J. Lee, Y.J. Juang and K. Koelling, “Hot Embossing in Microfabrication.
Part I: Experimental”, Polymer Engineering and Science, Vol.42, pp.539-550
(2002)
38.R. Truckenmüller, Z. Rummler, T.h. Schaller and W.K. Schomburg, “Low-cost
thermoforming of micro fluidic analysis chips”, Journal of Micromechanics
and Microengineering, Vol.12, pp.375-379 (2002).
39.C.R. Lin, R.H. Chen and C. Hung, “Preventing non-uniform shrinkage in open-
die hot embossing of PMMA microstructures”, Journal of Materials Processing
Technology, Vol.140, pp.173-178 (2003).
40.M. Hecke1e, A. Ger1ach, A. Guber and T. Scha11er, “Large area polymer
replication for microfluidic devices”, Proceedings of SPIE on Design, Test,
Integration, and Packaging of MEMS/MOEMS, Vol.4408, pp.469-477 (2001).
41.T. Kenny, “Polymer Hot Embossing with Silicon Templates”, National
Nanofabrication Users Network, pp.63 (1999).
42.H. Becker and U. Heim, “Silicon as tool material for polymer hot
embossing”, Proceedings of the IEEE Micro Electro Mechanical Systems
(MEMS), p.228-231 (1999).
43.L. Martynova, L. E. Locascio, M. Gaitan, et al., “Fabrication of Plastic
Microfluid Channels by Imprinting Methods”, Analytical Chemistry, Vol. 69,
pp. 4783-4789 (1997).
44.R.T. Kelly and A.T. Woolley, “Thermal Bonding of Polymeric Capillary
Electrophoresis Microdevices in Water”, Analytical Chemistry, Vol.75,
pp.1941-1945 (2003).
45.J. Wu, T.R. Christensen and O. Geschke, “Fabrication of Polymer Micro-
systems for Chemical Analysis”, CIRP Seminar on Micro- and Nanotechnology,
(2003).
46.L. Lid, C.J. Chiu, W. Bacher and M. Heckele, “Microfabrication using
silicon mold inserts and hot embossing”, IEEE Seventh International
Symposium on Micro Machine and Human Science, pp.67-71 (1996).
47.N. Bogdanski, H. Schulz, M. Wissen, et al., “3D-Hot embossing of undercut
structures-an approach to micro-zippers”, Microelectronic Engineering,
Vol.73-74, pp.190-195 (2004).
48.N.S. Ong, Y.H. Koh and Y.Q. Fu, “Microlens array produced using hot
embossing process”, Microelectronic Engineering, Vol.60, pp.365-379 (2002).
49.M.C. Choua, C.T. Panb, S.C. Shenc, et al., “A novel method to fabricate
gapless hexagonal micro-lens array”, Sensors and Actuators, Vol.A118,
pp.298-306 (2005).
50.邱治文,“熱擠壓式微透鏡陣列成形之研究”,國立中興大學精密工程研究所碩士論文
(2003)。
51.L. Lin, T.K. Shia and C.J. Chiu, “Silicon-processed plastic micropyramids
for brightness enhancement applications”, Journal of Micromechanics and
Microengineering, Vol.10, pp.395-400 (2000).
52.Y. Murakoshi, X.C. Shan and T. Sanoc, “Micro hot embossing for high aspect
ratio structure with materials flow enhancement by polymer sheet”,
Proceedings of SPIE on Device and Process Technologies for MEMS,
Microelectronics, and Photonics III, Vol.5276, pp.532-539 (2004).
53.S.J. Park, K.S. Cho and C.G. Choi, “Effect of fluorine plasma treatment on
PMMA and their application to passive optical waveguides”, Journal of
Colloid and Interface Science, Vol.258, pp.424-426 (2003).
54.李志宏,“精細微光波導熱壓成型複製度及品質比較研究”,雲林科技大學機械工程研究
碩士論文(2003)。
55.陳進龍, “高分子光分歧器之矽基模仁製作與微熱壓成形研究”,國立交通大學精密與
自動化工程研究所碩士論文(2003)。
56.王興邦,“玻璃微熱壓之成形特性研究”,國立交通大學機械工程研究所碩士論文
(2002)。
57.D. Grewell, A. Mokhtarzadeh, A. Benatar, C. Lu and J. Lee, “Feasibility of
selected methods for embossing micro-features in thermoplastics”, ANTEC
Conference, pp.1094-1098 (2003).
58.羅金德,“超音波加熱壓印微結構之研究”,國立臺灣大學機械工程研究所碩士論文
(2001)。
59.M. Wissen, H.C. Scheer and H. Schulz, “Large area definition of nano-
electrocdes by nanoimprint lithography”, Proceedings of SPIE on
Instrumentation and Control Technology, Vol.5253, pp.122-129 (2003).
60.H.D. Rowland and W.P. King, “Polymer deformation and filling modes during
microembossing”, Journal of Micromechanics and Microengineering, Vol.14,
pp.1625-1632 (2004).
61.L.J. Guo, “Recent progress in nanoimprint technology and its
applications”, Journal of Physics D: Applied physics, Vol.37, pp.R123-R141
(2004).
62.A. Lebib, Y. Chen, E. Cambril, et al., “Room-temperature and low-pressure
nanoimprint lithography”, Microelectronic Engineering, Vol.61-62, pp.371-
377 (2002).
63.A.P. Kam, J. Seekamp, V. Solovyev, et al., “Nanoimprinted organic field-
effect transistors:fabrication, transfer mechanism and solvent effects on
device characteristics”, Microelectronic Engineering, Vol.73-74, pp.809-813
(2004).
64.M. Beck , F. Persson, P. Carlberg, et al., “Nanoelectrochemical
transducers for (bio-) chemical sensor applications fabricated by
nanoimprint lithography”, Microelectronic Engineering, Vol.73-74, pp.837-
842 (2004).
65.R.W. Jaszewski, H. Schift, P. Gröning and G. Margaritondo, “Properties of
thin anti-adhesive films used for the replication of microstructures in
polymers”, Microelectronic Engineering, Vol.35, pp.381-384 (1997).
66.R.W. Jaszewski, H. Schift, B. Schnyder, A. Schneuwly and P. Gröning, “The
deposition of anti-adhesive ultra-thin teflon-like films and their
interaction with polymers during hot embossing”, Applied Surface Science,
Vol.143, pp.301-308 (1999).
67.S. Park, C. Padeste, H. Schift and J. Gobrecht, “Nanostructuring of anti-
adhesive layers by hot embossing lithography”, Microelectronic Engineering,
Vol.67-68, pp.252-258 (2003).
68.S. Park, H. Schift, C. Padeste, et al., “Anti-adhesive layers on nickel
stamps for nanoimprint lithography”, Microelectronic Engineering, Vol.73-
74, pp.196-201 (2004).
69.H.C. Scheer and H. Schulz, “ A contribution to the flow behaviour of thin
polymer films during hot embossing lithography”, Microelectronic
Engineering, Vol.56, pp.311-332 (2001)
70.X.J. Shen, L.W. Pan and L. Lin, “Microplastic embossing process-
experimental and theoretical characterizations”, Sensors and Actuators A,
Vol.97-98, pp.428-433 (2002).
71.H. Schulz, M. Wissen and H.C. Scheer, “Local mass transport and its effect
on global pattern replication during hot embossing”, Microelectronic
Engineering, Vol.67-68, pp.657-663 (2003).
72.L.J. Heyderman, H. Schift, C. David, J. Gobrecht and T. Schweizer, “Flow
behavior of thin polymer films used for hot embossing lithography”,
Microelectronic Engineering, Vol.54, pp.229-245 (2000).
73.H. Schift, L.J. Heyderman, M.A. Maur and J. Gobrecht, “Pattern formation
in hot embossing of thin polymer films”, Nanotechnology, Vol.12, pp.173-177
(2001).
74.賴文童,“微結構熱壓成形缺陷之探討”,國立交通大學機械工程研究所碩士論文
(2000)。
75.王培良,“塑膠微熱壓成形特性之研究”,國立交通大學機械工程研究所碩士論文
(1997)。
76.林威宇,“動態壓力控制對微結構熱壓特性的影響暨加工過程中聚丙烯的結晶”,國立交
通大學機械工程研究所碩士論文(2002).
77.蕭兆豐,“微熱壓成形系統校正、量測與模流分析”,私立淡江大學機械與機電工程研究
所碩士論文(2002)。
78.Y.J. Juang, J. Lee and K.W. Koelling, “Hot embossing in microfabrication.
Part II: Rheological characterization and process analysis”, Polymer
Engineering and Science, Vol.42, pp.551-566 (2002).
79.H. Yoshihiko, K. Takaaki, Y. Takashi and Y. Satoshi, “Simulation and
experimental study of polymer deformation in nanoimprint lithography”,
Journal of Vacuum Science and Technology B: Microelectronics and Nanometer
Structures, Vol.22, pp.3288-3293 (2004).
80.C. Tianhong, V. Kody, Z. Yongjun and W. Jing, “Simulation and Fabrication
of Novel Polymeric Tunneling Sensor by Hot Embossing Technique”, American
Society of Mechanical Engineers, MEMS, pp.611-620 (2002).
81.M. Worgull and M. Heckele, “New aspects of simulation in hot embossing”,
Microsystem Technologies, Vol.10, pp.432-437 (2003).
82.林佳榮,“聚合物熱壓成形之有限元素分析研究”,國立交通大學機械工程學研究所博士
論文(2003)。
83.H. Mekaru, T. Yamada, S. Yan and T. Hattori, “Microfabrication by hot
embossing and injection molding at LASTI”, Microsystem Technologies,
Vol.10, pp.682-688 (2004).
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 夏志清著、黃維樑譯:〈「老殘遊記」新論〉,《純文學》,第9卷第4期,1971年4月。
2. 金秉洙,前瞻天主教與中國的未來(上),神學論集,第129期(2002年1月),頁447-465。
3. 金秉洙,前瞻天主教與中國的未來(下),神學論集,第130期(2002年1月),頁579-590。
4. 金秉洙,佛教與天主教的中國本地化之路(上),神學論集,第127期(2001年4月),頁22-40。
5. 周志煌:〈「老殘遊記」與「太谷學派」--論近代民間思想的傳播牯A及其意涵〉,《輔大中研所學刊》,第3期,1994年6月。
6. 金秉洙,佛教與天主教的中國本地化之路(下),神學論集,第128期(2001年7月),頁247-274。
7. 武金正,馬克斯主義與宗教接觸的過程,神學論集,第114期(1998年1月),頁492-506。
8. 林本炫,「國家、宗教與社會控制—宗教壓迫論述的分析」,思與言,第34卷第2期(1996年6月),頁21-66。
9. 吳淳邦:〈晚清四大小說《官場現形記》、《二十年目睹之怪現狀》、《老殘遊記》、《孽海花》中的對比技巧〉,《中外文學》,第13卷第7期,1984年12月。
10. 呂明修:〈風雨飄零紅妓淚--談「老殘遊記」裡的翠環〉,《國文天地》,第8卷第6期,1992年11月。
11. 李辰冬:〈「老殘遊記」(劉顎)的價值 (上)〉,《學粹》,第15卷第3期,1973年3月。
12. 劉勝驥,改革開放以來大陸宗教之發展,中國大陸研究,第44卷第2期(2001年12月),頁65-88。
13. 顧衛民,中國天主教本地化的歷程,淡江史學,第9期(1998年9月),頁181-201。
14. 羅光,天主教的政教關係觀,哲學與文化,第19卷第9期(1992年9月),頁778-782。
15. 戴康生,當代中國大陸宗教與精神文明建設,宗教哲學,第2卷第2期(1996年4月),頁9-17。