參考文獻
1.Paul Gottehrer, Fundamentals of Microfabrication, CRC, (1997).
2.Malti Goel, “Recent developments in electroceramics:MEMS applications for
energy and environment”, Ceramics International, Vol.30, pp.1147-1154
(2004).
3.A. Arshak, K. Arshak, D. Waldron, et al., “Review of the potential of a
wireless MEMS and TFT microsystems for the measurement of pressure in the GI
tract”, Medical Engineering & Physics,(2005).
4.J.H. Daniel, R.A. Street, M. Teepe, et al., “Large area MEMS:materials
issues and applications”, Materials Research Society, Vol.685E, pp.D2.5.1-
D2.5.6 (2001).
5.B. Bharat, “Micro/nanotribology and its applications to magnetic storage
devices and MEMS”, Tribology International, Vol. 28, pp.85-96 (1995).
6.S. Sriram and B. Bharat, “Micro/nanotribological studies of polysilicon and
SiC films for MEMS applications”, Wear, Vol.217, pp.251-261 (1998).
7.U. Beerschwinger, T. Albrecht and D. Mathieson, “Wear at microscopic scales
and light loads for MEMS applications”, Wear, Vol.181-183, pp.426-435
(1995).
8.Y. Hirata, “LIGA process-Micromachining technique using synchrotron
radiation lithography-And some industrial applications”, Nuclear
Instruments and Methods in Physics Research B, Vol.208, pp.21-26 (2003).
9.J. Hormes, J. Göttert, K. Lian, Y. Desta and L. Jian, “Materials for LIGA
and LIGA-based microsystems”, Nuclear Instruments and Methods in Physics
Research B, Vol.199, pp.332-34 1(2003).
10.C.K. Malek and S. Volker, “Applications of LIGA technology to precision
manufacturing of high-aspect-ratio micro-components and-systems:a review”,
Microelectronics Journal, Vol.35, pp.131-143 (2004).
11.H.R. Liu, M.J Vasde, J. Göettert and D.J. Beebe, “Investigation of the
LIGA process to fabricate microchannel plates”, Proceedings of IEEE
Internafional Conference on Solid-state Sensors and Actuators, pp.645-648
(1997).
12.Y. Cheng, B.Y. Shew, C.Y. Lin, D.H. Wei and M.K. Chyu, “Ultra-deep LIGA
process”, Nuclear Instruments and Methods in Physics Research Section
A,Vol.467-468, pp.1192-1197 (2001).
13.H. Becker and U. Heim, “Hot embossing as a method for the fabrication of
polymer high aspect ratio structures”, Sensors and Actuators, Vol.83,
pp.130-135 (2000).
14.H. Becker, U. Heim and O. Rötting, “The Fabrication of polymer high aspect
ratio structures with hot embossing for microfluidic applications”,
Proceedings of SPIE Conference on Microfluidic Devices and Systems II,
Vol.3877, pp.74-79 (1999).
15.H. Becker and W. Dietz, “Microfluidic devices for μ-TAS applications
fabricated by polymer hot embossing”, Proceedings of SPIE Conference on
Microfluidic Devices and Systems, Vol3515.pp.177-182 (1998).
16.S. Bodovitz, T. Joos and J. Bachmann, “Protein biochips:the calm before
the storm”, Drug Discovery Today: Targets, Vol.10, pp.283-287 (2005).
17.R. Bashir, “BioMEMS:state-of-the-art in detection, opportunities and
prospects”, Advanced Drug Delivery Reviews, Vol.56, pp.1565- 1586 (2004).
18.C. Timoney and R. Felder, “Biochip Technology of the Future-Today”,
Journal of the Association for Laboratory Automation, Vol. 4, pp.86-89
(1999).
19.W. Dua, Z. Xub, X. Ma, L. Song and E.M. Schneider, “Biochip as a potential
platform of serological interferon α2b antibody assay”, Journal of
Biotechnology, Vol.106, pp.87-100 (2003).
20.L.J. Kricka, “Microchips, microarrays, biochips and nanochips: personal
laboratories for the 21st century”, International Journal of Clinical
Chemistry and Applied Molecular Biology, Vol.307, pp. 219-223 (2001).
21.M. Campás and I. Katakis, “DNA biochip arraying, detectionand
amplification strategies”, Trends in Analytical Chemistry, Vol.23, pp.49-62
(2004).
22.X.C. Shan, R. Maeda and Y. Murakoshi, “Micro hot embossing for replication
of microstructures”, The Japan Society of Applied Physics, Vol.42, pp.3859-
3862 (2003).
23.B. Graö, A. Neyer, M. Johnck, D. Siepe, F. Eisenbeiö, G. Weber and R.
Hergenroder, “A new PMMA-microchip device for isotachophoresis with
integrated conductivity detector”, Sensors and Actuators B,Vol.72, pp.249-
258 (2001).
24.J. Narasimhan and I. Papautsky, “Polymer embossing tools for rapid
prototyping of plastic microfluidic devices”, Journal of Micromechanics and
Microengineering, Vol.14, pp.96-103 (2004).
25.J. Mizuno, T. Harada, T. Glinsner, et al., “Fabrications of micro-channel
device by hot emboss and direct bonding of PMMA”, Proceedings of IEEE
International Conference on MEMS, NANO and Smart Systems (ICMENS), pp.24-27
(2004).
26.M. Heckele and W.K. Schomburg, “Review on micro molding of thermoplastic
Polymers”, Journal of Micromechanics and Microengineering, Vol.14, pp.R1-
R14 (2004).
27.M. Heckele, “Hot embossing - A flexible and successful replication
technology for polymer MEMS”, Proceedings of SPIE on Microfluidics,
BioMEMS, and Medical Microsystems II, Vol.5345, pp.108-117 (2004).
28.G.B. Lee, S.H. Chen, G. Ruey, et al., “Microfabricated plastic chips by
hot embossing methods and their applications for DNA separation and
detection”, Sensors and Actuators B, Vol.75, pp.142-148 (2001).
29.Z. Chen, Y. Gao, J. Lin, R. Su, and Y. Xie, “Vacuum-assisted thermal
bonding of plastic capillary electrophoresis microchip imprinted with
stainless steel template”, Journal of Chromatography A, pp.239-245 (2004).
30.Y. Zhao and T. Cui, “Fabrication of high-aspect-ratio polymer-based
electrostatic comb drives using the hot embossing technique”, Journal of
Micromechanics and Microengineering, Vol.13, pp.430-435 (2003).
31.S.M. Ford, B. Kar, S. McWhorter, et al., “Microcapillary electrophoresis
devices fabricated using polymeric substrates and X-ray lithography”,
Journal of Microcolumn Separations, Vol.9, pp.413-422 (1998)
32.黃冠瑞,“高效能微流體晶片之設計製作與其在生物醫學之應用”,國立成功大學工程科
學究所碩士論文(2000)。
33.H. Becker, W. Ehrfe1d and R. Pommersheim, “ Multichannel arrays on polymer
substrates - towards a disposable proteomics chip”, Proceedings of SPIE on
Design, Test, and Microfabrication of MEMS and MOEMS, Vol. 3680, pp.728-733
(1999).
34.A.E. Guber, M. Heckele, D. Herrmann, et al., “Microfluidic lab-on-a-chip
systems based on polymers—fabrication and application”, Chemical
Engineering Journal, Vol.101, pp.447-453 (2004).
35.W.W.Y. Chow, K.F. Lei, G. Shi, W.J. Li, and Q. Huang, “Micro fluidic
channel fabrication by PDMS-interface bonding”, Proceedings of SPIE on
Biomems and Nanotechnology, Vol.5275, pp.141-148 (2004).
36.O. Rötting, W. Röpke, H. Becker and C. Gärtner, “Polymer microfabrication
technologies”, Microsystem Technologies, Vol.8, pp.32-36 (2002).
37.J. Lee, Y.J. Juang and K. Koelling, “Hot Embossing in Microfabrication.
Part I: Experimental”, Polymer Engineering and Science, Vol.42, pp.539-550
(2002)
38.R. Truckenmüller, Z. Rummler, T.h. Schaller and W.K. Schomburg, “Low-cost
thermoforming of micro fluidic analysis chips”, Journal of Micromechanics
and Microengineering, Vol.12, pp.375-379 (2002).
39.C.R. Lin, R.H. Chen and C. Hung, “Preventing non-uniform shrinkage in open-
die hot embossing of PMMA microstructures”, Journal of Materials Processing
Technology, Vol.140, pp.173-178 (2003).
40.M. Hecke1e, A. Ger1ach, A. Guber and T. Scha11er, “Large area polymer
replication for microfluidic devices”, Proceedings of SPIE on Design, Test,
Integration, and Packaging of MEMS/MOEMS, Vol.4408, pp.469-477 (2001).
41.T. Kenny, “Polymer Hot Embossing with Silicon Templates”, National
Nanofabrication Users Network, pp.63 (1999).
42.H. Becker and U. Heim, “Silicon as tool material for polymer hot
embossing”, Proceedings of the IEEE Micro Electro Mechanical Systems
(MEMS), p.228-231 (1999).
43.L. Martynova, L. E. Locascio, M. Gaitan, et al., “Fabrication of Plastic
Microfluid Channels by Imprinting Methods”, Analytical Chemistry, Vol. 69,
pp. 4783-4789 (1997).
44.R.T. Kelly and A.T. Woolley, “Thermal Bonding of Polymeric Capillary
Electrophoresis Microdevices in Water”, Analytical Chemistry, Vol.75,
pp.1941-1945 (2003).
45.J. Wu, T.R. Christensen and O. Geschke, “Fabrication of Polymer Micro-
systems for Chemical Analysis”, CIRP Seminar on Micro- and Nanotechnology,
(2003).
46.L. Lid, C.J. Chiu, W. Bacher and M. Heckele, “Microfabrication using
silicon mold inserts and hot embossing”, IEEE Seventh International
Symposium on Micro Machine and Human Science, pp.67-71 (1996).
47.N. Bogdanski, H. Schulz, M. Wissen, et al., “3D-Hot embossing of undercut
structures-an approach to micro-zippers”, Microelectronic Engineering,
Vol.73-74, pp.190-195 (2004).
48.N.S. Ong, Y.H. Koh and Y.Q. Fu, “Microlens array produced using hot
embossing process”, Microelectronic Engineering, Vol.60, pp.365-379 (2002).
49.M.C. Choua, C.T. Panb, S.C. Shenc, et al., “A novel method to fabricate
gapless hexagonal micro-lens array”, Sensors and Actuators, Vol.A118,
pp.298-306 (2005).
50.邱治文,“熱擠壓式微透鏡陣列成形之研究”,國立中興大學精密工程研究所碩士論文(2003)。
51.L. Lin, T.K. Shia and C.J. Chiu, “Silicon-processed plastic micropyramids
for brightness enhancement applications”, Journal of Micromechanics and
Microengineering, Vol.10, pp.395-400 (2000).
52.Y. Murakoshi, X.C. Shan and T. Sanoc, “Micro hot embossing for high aspect
ratio structure with materials flow enhancement by polymer sheet”,
Proceedings of SPIE on Device and Process Technologies for MEMS,
Microelectronics, and Photonics III, Vol.5276, pp.532-539 (2004).
53.S.J. Park, K.S. Cho and C.G. Choi, “Effect of fluorine plasma treatment on
PMMA and their application to passive optical waveguides”, Journal of
Colloid and Interface Science, Vol.258, pp.424-426 (2003).
54.李志宏,“精細微光波導熱壓成型複製度及品質比較研究”,雲林科技大學機械工程研究
碩士論文(2003)。
55.陳進龍, “高分子光分歧器之矽基模仁製作與微熱壓成形研究”,國立交通大學精密與
自動化工程研究所碩士論文(2003)。
56.王興邦,“玻璃微熱壓之成形特性研究”,國立交通大學機械工程研究所碩士論文(2002)。
57.D. Grewell, A. Mokhtarzadeh, A. Benatar, C. Lu and J. Lee, “Feasibility of
selected methods for embossing micro-features in thermoplastics”, ANTEC
Conference, pp.1094-1098 (2003).
58.羅金德,“超音波加熱壓印微結構之研究”,國立臺灣大學機械工程研究所碩士論文(2001)。
59.M. Wissen, H.C. Scheer and H. Schulz, “Large area definition of nano-
electrocdes by nanoimprint lithography”, Proceedings of SPIE on
Instrumentation and Control Technology, Vol.5253, pp.122-129 (2003).
60.H.D. Rowland and W.P. King, “Polymer deformation and filling modes during
microembossing”, Journal of Micromechanics and Microengineering, Vol.14,
pp.1625-1632 (2004).
61.L.J. Guo, “Recent progress in nanoimprint technology and its
applications”, Journal of Physics D: Applied physics, Vol.37, pp.R123-R141
(2004).
62.A. Lebib, Y. Chen, E. Cambril, et al., “Room-temperature and low-pressure
nanoimprint lithography”, Microelectronic Engineering, Vol.61-62, pp.371-
377 (2002).
63.A.P. Kam, J. Seekamp, V. Solovyev, et al., “Nanoimprinted organic field-
effect transistors:fabrication, transfer mechanism and solvent effects on
device characteristics”, Microelectronic Engineering, Vol.73-74, pp.809-813
(2004).
64.M. Beck , F. Persson, P. Carlberg, et al., “Nanoelectrochemical
transducers for (bio-) chemical sensor applications fabricated by
nanoimprint lithography”, Microelectronic Engineering, Vol.73-74, pp.837-
842 (2004).
65.R.W. Jaszewski, H. Schift, P. Gröning and G. Margaritondo, “Properties of
thin anti-adhesive films used for the replication of microstructures in
polymers”, Microelectronic Engineering, Vol.35, pp.381-384 (1997).
66.R.W. Jaszewski, H. Schift, B. Schnyder, A. Schneuwly and P. Gröning, “The
deposition of anti-adhesive ultra-thin teflon-like films and their
interaction with polymers during hot embossing”, Applied Surface Science,
Vol.143, pp.301-308 (1999).
67.S. Park, C. Padeste, H. Schift and J. Gobrecht, “Nanostructuring of anti-
adhesive layers by hot embossing lithography”, Microelectronic Engineering,
Vol.67-68, pp.252-258 (2003).
68.S. Park, H. Schift, C. Padeste, et al., “Anti-adhesive layers on nickel
stamps for nanoimprint lithography”, Microelectronic Engineering, Vol.73-
74, pp.196-201 (2004).
69.H.C. Scheer and H. Schulz, “ A contribution to the flow behaviour of thin
polymer films during hot embossing lithography”, Microelectronic
Engineering, Vol.56, pp.311-332 (2001)
70.X.J. Shen, L.W. Pan and L. Lin, “Microplastic embossing process-
experimental and theoretical characterizations”, Sensors and Actuators A,
Vol.97-98, pp.428-433 (2002).
71.H. Schulz, M. Wissen and H.C. Scheer, “Local mass transport and its effect
on global pattern replication during hot embossing”, Microelectronic
Engineering, Vol.67-68, pp.657-663 (2003).
72.L.J. Heyderman, H. Schift, C. David, J. Gobrecht and T. Schweizer, “Flow
behavior of thin polymer films used for hot embossing lithography”,
Microelectronic Engineering, Vol.54, pp.229-245 (2000).
73.H. Schift, L.J. Heyderman, M.A. Maur and J. Gobrecht, “Pattern formation
in hot embossing of thin polymer films”, Nanotechnology, Vol.12, pp.173-177
(2001).
74.賴文童,“微結構熱壓成形缺陷之探討”,國立交通大學機械工程研究所碩士論文(2000)。
75.王培良,“塑膠微熱壓成形特性之研究”,國立交通大學機械工程研究所碩士論文(1997)。
76.林威宇,“動態壓力控制對微結構熱壓特性的影響暨加工過程中聚丙烯的結晶”,國立交
通大學機械工程研究所碩士論文(2002).
77.蕭兆豐,“微熱壓成形系統校正、量測與模流分析”,私立淡江大學機械與機電工程研究
所碩士論文(2002)。
78.Y.J. Juang, J. Lee and K.W. Koelling, “Hot embossing in microfabrication.
Part II: Rheological characterization and process analysis”, Polymer
Engineering and Science, Vol.42, pp.551-566 (2002).
79.H. Yoshihiko, K. Takaaki, Y. Takashi and Y. Satoshi, “Simulation and
experimental study of polymer deformation in nanoimprint lithography”,
Journal of Vacuum Science and Technology B: Microelectronics and Nanometer
Structures, Vol.22, pp.3288-3293 (2004).
80.C. Tianhong, V. Kody, Z. Yongjun and W. Jing, “Simulation and Fabrication
of Novel Polymeric Tunneling Sensor by Hot Embossing Technique”, American
Society of Mechanical Engineers, MEMS, pp.611-620 (2002).
81.M. Worgull and M. Heckele, “New aspects of simulation in hot embossing”,
Microsystem Technologies, Vol.10, pp.432-437 (2003).
82.林佳榮,“聚合物熱壓成形之有限元素分析研究”,國立交通大學機械工程學研究所博士論文(2003)。
83.H. Mekaru, T. Yamada, S. Yan and T. Hattori, “Microfabrication by hot
embossing and injection molding at LASTI”, Microsystem Technologies,
Vol.10, pp.682-688 (2004).