跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/21 12:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃建霖
研究生(外文):Jeng-Lin Huang
論文名稱:自激振盪之電路設計與分析
論文名稱(外文):Design and Analysis of Self-Oscillating Circuit
指導教授:丁鏞
指導教授(外文):Yung Ting
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:103
中文關鍵詞:自激驅動電路自動增益控制電路同步解調電路差動放大電路
外文關鍵詞:synchronous demodulation circuit.differential amplifier circuitautomatic gain control circuitself-excited driving circuit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究是設計一應用於陀螺儀之驅動感測電路。驅動電路模組採用自激驅動方式,利用陀螺儀本身諧振特性配合反饋電路,使陀螺儀於固有共振頻率下產生自激振盪,並加入自動增益控制電路以穩定驅動信號之振幅,提高陀螺儀感測精度,同時為感測電路模組提供穩定之同步信號。而感測電路模組利用差動放大電路將感測電壓信號中無效之驅動電壓成份抑除,放大感測信號。並利用同步解調電路將同步信號與陀螺儀感測輸出信號進行同步解調,得到相對應於角速度之電壓信號。最後對電路模組的性能和測試結果進行探討,並將陀螺儀與電路整合,於旋轉實驗進行測試,得到轉速與感測電壓擁有良好的線性關係。
In this thesis, designing a driving and sensing circuitry for gyroscope is the primary goal. Self-excited mode is used for designing the driving circuit. The operating frequency is assigned based on the desired resonant frequency of the gyroscope. In association with the feedback circuit, the gyroscope is able to generate appropriate oscillation. Auto gain control circuit is also included to stabilize the amplitude of the driving signal in order to increase its accuracy and provide a steady synchronous signal for the sensing circuitry. Differential amplifier circuit is used to remove the invalid driving signal involved in the sensing signal and then to amplify such clean signal. Synchronous demodulation circuit is also employed to carry out demodulation of the synchronous signal with the sensing signal, thus the voltage signal with respect to the rotation rate is finally obtained. Functioning test is completed in experiment to show its performance of a good resolution and a linear relationship between the rotation speed and the sensing voltage.
目 錄

中文摘要.........................................I
英文摘要........................................II
誌謝...........................................III
目錄............................................IV
圖目錄.........................................VII
表目錄...........................................X

第一章 緒論.....................................1
1.1 前言.................................1
1.2 文獻回顧.............................4
1.3 論文架構.............................9

第二章 壓電感測與陀螺儀簡介....................10
2.1 壓電效應............................10
2.2 各式壓電振動陀螺儀之介紹............13
2.3 壓電圓柱型陀螺儀工作原理............20
2.3.1 圓柱型陀螺儀結構..............20
2.3.2 陀螺儀之感測原理..............21
2.3.3 陀螺儀之等效電路..............24
2.3.4 陀螺儀之模擬分析..............27

第三章 驅動與信號析出電路模組之設計............30
3.1 驅動電路模組........................31
3.1.1 自激式振盪原理................33
3.1.2 自激振盪電路設計考量..........36
3.1.3 自動增益控制(AGC)電路.........45
3.1.4 相位補償電路..................48
3.2 感測信號析出電路模組................51
3.2.1 差動放大器....................52
3.2.2 同步解調器....................57

第四章 特性實驗與結果..........................60
4.1 陀螺儀共振頻率及電氣參數量測........61
4.1.1 共振頻率量測實驗..............61
4.1.2 等效電路參數量測實驗..........66
4.2 驅動電路模組實驗....................67
4.2.1 驅動及感測信號測試............69
4.2.2 自動增益控制電路..............72
4.2.3 相位補償電路..................74
4.2.4 自激驅動電路實現..............77
4.3 感測信號析出電路模組實驗............78
4.3.1 差動放大電路測試..............78
4.3.2 同步解調電路測試..............82
4.3.3 感測信號析出模組實現..........85
4.4 旋轉特性實驗........................87

第五章 結論與未來展望..........................90
5.1 結論................................90
5.2 未來展望............................92

參考文獻........................................94
附錄A 儀器規格.................................100
附錄B 訊號擷取程式.............................102
簡歷...........................................103

圖 目 錄

圖2.1 壓電效應................................11
圖2.2 方樑型陀螺儀結構示意圖..................13
圖2.3 三角樑型陀螺儀結構示意圖................15
圖2.4 音叉型陀螺儀結構示意圖..................16
圖2.5 圓柱管型陀螺儀結構示意圖................18
圖2.6 圓柱型陀螺儀結構圖......................20
圖2.7 圓柱型陀螺儀感測示意圖..................21
圖2.8 陀螺儀內部感測效應圖....................22
圖2.9 振動模態示意圖..........................22
圖2.10 驅動之感測端信號情形....................23
圖2.11 旋轉時感測端信號產生情形................23
圖2.12 模態與角速度關係圖......................24
圖2.13 基本等效電路圖..........................25
圖2.14 圓柱型振動陀螺儀之等效電路圖............26
圖2.15 陀螺儀結構..............................28
圖2.16 頻率為31571Hz之模態.....................28
圖2.17 驅動方向之頻率響應圖....................29
圖3.1 驅動及感測信號析出電路架構圖............30
圖3.2 振盪頻率與穩定度之關係..................31
圖3.3 自激共振電路正回授系統..................33
圖3.4 回授型振盪器............................36
圖3.5 回授型電晶體振盪器......................37
圖3.6 Colpitts振盪器等效電路..................38
圖3.7 水晶或陶瓷振盪子之等效電路圖............39
圖3.8 晶體電抗對頻率之關係圖..................40
圖3.9 晶體之等效電抗圖........................41
圖3.10 晶體電阻電抗與頻率之關係圖..............41
圖3.11 振盪狀態之晶體振動子等效電路............42
圖3.12 利用陀螺儀電感性之Colpitts電路..........43
圖3.13 自激驅動電路之設計架構..................44
圖3.14 自動增益控制(AGC)之功能方塊圖...........46
圖3.15 AGC電路設計架構.........................47
圖3.16 RC落後相移電路..........................48
圖3.17 相位補償電路架構........................49
圖3.18 差動放大器架構圖........................52
圖3.19 差動放大器之差動輸入示意圖..............55
圖3.20 差動放大器之共模輸入示意圖..............55
圖3.21 感測信號與差動運算波形..................56
圖3.22 同步解調系統............................57
圖3.23 同步檢波信號示意圖......................59
圖4.1 陀螺儀架設之實體圖......................61
圖4.2 陀螺儀驅動方向(DR1)阻抗與頻率關係圖.....62
圖4.3 陀螺儀感測方向(PU2)阻抗與頻率關係圖.....63
圖4.4 陀螺儀感測方向(PU3)阻抗與頻率關係圖.....64
圖4.5 陀螺儀驅動及感測方向阻抗與頻率關係圖....65
圖4.6 驅動電路模組架構........................67
圖4.7 驅動信號2VP-P時,DR1、PU2及PU3信號波形..69
圖4.8 驅動信號5VP-P時,DR1、PU2及PU3信號波形..70
圖4.9 驅動信號2VP-P時, PU2及PU3信號波形......71
圖4.10 驅動信號5VP-P時, PU2及PU3信號波形......71
圖4.11 基準電壓為-0.64V之驅動信號輸出..........72
圖4.12 基準電壓為-1.68V之驅動信號輸出..........73
圖4.13 輸出訊號經由AGC電路後之相移.............74
圖4.14 相位補償後相差90度之波形................75
圖4.15 相位補償後相差0度之波形.................75
圖4.16 陀螺儀驅動端(DR1)之信號量測結果.........77
圖4.17 感測信號析出電路模組....................78
圖4.18 陀螺儀未旋轉之感測信號及差動輸出........79
圖4.19 陀螺儀順時針旋轉之感測信號及差動輸出....80
圖4.20 陀螺儀逆時針旋轉之感測信號及差動輸出....80
圖4.21 輸入於同步解調電路之感測信號............83
圖4.22 同步信號................................83
圖4.23 陀螺儀順時針旋轉之解調電路輸出信號......84
圖4.24 陀螺儀逆時針旋轉之解調電路輸出信號......84
圖4.25 陀螺儀於靜止時之感測電壓信號............85
圖4.26 陀螺儀順時針旋轉之感測電壓信號..........86
圖4.27 陀螺儀逆時針旋轉之感測電壓信號..........86
圖4.28 陀螺儀感測電路..........................87
圖4.29 轉速與感測電壓關係圖....................89

表 目 錄

表4.1 轉速對感測電壓之關係表..................88
參考文獻
[1]Soderkvist, J., “Micromachined gyroscopes”, Sensor and Actuator, A43, pp.65-71, 1994.
[2]Oho, S., Kajioka, H., Sasayama, T., “Optical fiber gyroscope for automotive navigation”, Vehicular Technology, IEEE Transactions on vol. 44, pp.698-705, Aug. 1995.
[3]Barnaby, R., E., Chatterton, J., B., Gerring, F., H., ”General Theory and Operational Characteristics of the Gyrotron Angular Rate Tachometer.” Aeronautical Engineering , Rev. 12-11, pp.31-36, 1953.
[4]Burdess, J., S., Wood, D., Harris, A., J., Cooper, G., and Cruickshank, J., “Vibrating Gyroscopes”, The Instution of Electrical Engineers, 1993.
[5]Synge, J., L., Griffith, B., A., “Principle of Mechanics”, 3rd edition, McGraw-Hill Book Company, Inc., pp. 365, 1959.
[6]Barbour, N., Madden, P., Socha, M.,”A Micromechanical Gyro Package With GPS Under Development For Small Pointing Satellites”, Charles Stark Draper Laboratory, Cambridge, MA 02139, 1997.
[7]Jeffrey, S., C., and Douglas, A., S., “Stability Analysis of a Dynamically Tuned Gyroscope”, Journal of Guidance, Control, and Dynamics, vol. 29, No. 4, Aug, 2006.
[8]Gustavson, T., L., Landragin, A., Kasevich, M., “Rotation sensing with a dual atominterferometer Sagnac gyroscope”, Class Quantum Grav, vol. 17, p. 1, 2000.
[9]http://www.sperrymarine.northropgrumman.com/Company-Information/Corporate-History/Sperry-History/
[10]Vali, V., Shorthill, R., W., “Fiber ring interferometers”, Appl. Optics. 15, 1009, 1976.
[11]Barnaby, R., E., Chatterton, J., B., and Gerring, F., H., ”General Theory and Operational Characteristics of the Gyrotron Angular Rate Tachometer”, Aeronautical Engineering, Rev. 12-11, pp.31-36, 1953.
[12]Staudte, J., H., ”Subminiature Quartz Tuning Fork Resonator Frequency Control”, 27th Annual Symposium, pp. 50-54, 1973.
[13]黃正吉, “樑式陀螺儀的分析”, 國立台灣大學應用力學研究所, 博士論文, 1988.
[14]黃育欽, “旋轉壓電樑之振動分析與實驗測試”, 國立臺灣大學應用力學研究所, 碩士論文, 1990.
[15]Paoletti, F., Gretillat, M., A., and de Rooij, N., F.,”A silicon micromachined vibrating gyroscope with piezoresistive detection and electromagnetic excitation,” Proceedings of Ninth International Workshop on Micro Electromechanical Systems, pp.162-167, 1996.
[16]Fujita, T., “Two-Dimensional Micromachined Gyroscope”, Solid State Sensors and Actuators, pp. 887-890, Jun. 16-19, 1997.
[17]Wakatuki, N., Kudo, S., Satoh, Y., Tanaka, H., “A new approach to piezoelectric crystal gyroscopes for higher sensitivity” Ultrasonics Symposium IEEE, vol.1, pp. 477-480, Oct. 1998.
[18]Philip, W., L., “Analysis and compensation of imperfection effects in piezoelectric vibratory gyroscopes”, Blacksburg Virginia Dr. ing. Thesis, 1999.
[19]Kristiansen, D., “Modeling of cylinder gyroscopes and observer design for nonlinear oscillations”, Department of Engineering Cybernetics Norwegian University of Science and Technology, Dr. ing. Thesis, 2000.
[20]周唐詮 ,“微小環型諧振式陀螺儀之結構製造”, 國立交通大學機械工程研究所, 碩士論文, 2002.
[21]Yang, J., S., Fang, H., Y., “A new ceramic tube piezoelectric gyroscope”, Sensor and Actuator, vol. 107, pp. 42-49, 2003.
[22]禹道正, “半球殼陀螺儀之驅動與感測研究”, 國立臺灣大學應用力學研究所, 碩士論文, 2004.
[23]賴岱鈺, “慣性感測器驅動電路與APM感測器相位偵測系統之研製”, 國立清華大學, 工程與系統科學系, 碩士論文, 2004.
[24]Kudo, S., Sugawara, S., and Wakatuki, N., “Improvement of transitional. response characteristics of a piezoelectric vibratory gyroscope” , Jpn. J. Appl. Phys., vol. 35, pp. 3055-3058, 1996.
[25]Fujishima, S., Nakamura, T., and Fujimoto, K.,”Piezoelectric vibratory gyroscope using flexural vibration of a triangular bar”, Forty-Fifth Annual Symposium on Frequency Control, pp. 261-265, 1991.
[26]Bryan, G., H., “On the beats in the vibrations of a revolving cylinder or bell”, Proceedings of the Cambridge Philosophical Society, vol. 7, pp.101-111, 1890.
[27]Hunt, G., H., and Hobbs, A., E., W., “Development of an accurate tuning-fork gyroscope”, Symposium on Gyros, Proc. Inst. Mech. Eng. (London), vol. 179(3E), pp.129-139, 1965.
[28]Putty, M., W., and Najafi, K., “A micromachined vibrating ring gyroscope”, Solid-State Sensor and Actuator Workshop, Hilton Head, South Carolina, pp.213-220, 1994.
[29]Sugawara, S., Konno, M., “Equivalent Circuits of a Piezoelectric Vibratory Gyro”, Ultrasonics Symposium IEEE, pp. 539-542, 1987.
[30]Kudo, S., Konno, M., Sugawara, S., Yoshida, T., “Consideration on equivalent mechanical circuits for vibratory gyroscope”, Ultrasonics Symposium IEEE, vol.1, pp. 397-400, Dec. 1990.
[31]Chiba, M., Wakatsuki, N., “Experimental validation of temperature self-compensation for LiTaO3 piezoelectric gyroscope” Ultrasonics Symposium IEEE, vol. 1, 22-25 pp. 883-888, Oct. 2000.
[32]Kudo, S., “Consideration of Figure of Merit of Piezoelectric Vibratory Gyroscope Using Charge Sensitivity”, Jpn. J. Appl. Phys. pp. 3688-3692, 2001.
[33]Kikuchi, T., Gouji, S., Tai, T., Hayashi, S., Okada, N., Tani, M., Ishikawa, S., Yokoi, S., Enokijima, T., Kawamura, Y., Osugi, Y., Masuda, M., Katsukawa, H., Kobayashi, Y., Morita, Y., “Miniaturized quartz vibratory gyrosensor with hammer-headed arms”, Frequency Control Symposium and Exposition, pp. 330-333, Aug. 2004.
[34]Levy, R., Janiaud, D., Traon, L. O., Muller, S., Gilles, J. P., Raynaud, G., “A new analog oscillator electronics applied to a piezoelectric vibrating gyro”, Frequency Control Symposium and Exposition, pp. 326 – 329, Aug. 2004.
[35]Piezosystem jena, inc., “Piezosystem jena catalogue”, Germany, 2001.
[36]Burdess, J., S., Harris, A., J., Cruickshank, J., Wood, D., and Cooper, G., “A review of vibratory gyroscopes”, Engineering Science and Education Journal, pp.249-254, Dec. 1994.
[37]Murata Co. Ltd., “Piezoelectric vibratory gyroscope using flexural vibration of a triangular bar”, Proc. of the 45th Ann. on Frequency Conf., pp.261-265, 1991.
[38]Kanani, B.,”Operating principles of the monolithic cylinder gyroscope” , Ultrasonics Symposium IEEE, vol.2, pp. 1195-1198, Aug. 2004.
[39]Ting, Y., Huang, J., S., Huang, J., L., Yang, C., M.,” Effect of polarized electric field on piezoelectric cylinder vibratory gyroscope” Sensors and Actuators A 128 pp. 248-256, 2006.
[40]Abe, H., Yoshida, T., Turuga, K. “Piezoelectric-ceramic cylinder vibratory gyroscope”, Jpn. J. Appl. Phys., pp. 3061-3063, 1992.
[41]Shuta. K., Abe. H., “Compact Vibratory Gyroscope”, Jpn. J. Appl. Phys., pp. 2601-2603, 1995.
[42]Rudolf F. Graf, ”Oscillator Circuits”, Boston Oxford Johanesburg New Delhi Singapore, 1997.
[43]B. Razavi, “Design of Analog CMOS Integrated Circuits”, McGraw-Hill, Chap. 14.2, 2001.
[44]Lee, C., H., Laskar J., ” Compact Ku-band transmitter design for satellite communication applications : from system analysis to hardware implementation,” Kluwer Academic Publishers, 2002.
[45]Marvin, E., F., ”CRYSTAL OSCILLATOR DESIGN AND TEMPERATURE COMPENSATION”, Van Nostrand Reinhold Company, 1978.
[46]Eugenio, J., T., and Carlos, F., C., “A Wide Range and High Speed Automatic Gain Control”, Superconducting Super Collider Lab., May 1993.
[47]Signell, S., and Mossberg, K., “Off set-Compensation of Switched-Capacitor Two-Phase Filters”, IEEE Transaction on Circuits and Systems, Vol. 36, No. 1, Jan. 1989.
[48]Sutton, J., F.,”A low noise synchronous detector”,Goddard Space Flight Center, National Aeronautics and Space Administration, Vol. 69, No. 6, Jun. 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top