跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/16 03:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王譽翔
研究生(外文):Yu-Hsiang Wang
論文名稱:二維空間物件追蹤控制系統設計
論文名稱(外文):Design of 2DOF Object-Tracking Control
指導教授:丁鏞
指導教授(外文):Yung Ting
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:63
中文關鍵詞:重複性控制器零相位誤差追蹤控制器擾動觀測器
外文關鍵詞:disturbance observerzero phase error tracking controllerrepetitive controller
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要研究為針對半導體製程中電鍍區上下料之應用需求,依符合工作需求之機械手臂系統來設計一套適合之速度追蹤數位定位控制。使用之馬達之阻滯力及控制系統之閉迴路相位落後的特性,均會影響移動速度及定位精度,因此在速度迴路中利用擾動觀測器之設計將該阻滯力的影響予以排除。另於位置迴路中設計PD控制器建構一漸近穩定的閉迴路回授系統。由於擾動觀測器無法將馬達中高頻的阻滯力完全排除而使得系統產生顫震的現象,而此阻滯力為一週期性的擾動,故考慮加入重複性控制器設計以抑制擾動帶來的影響。此外,為了消除閉迴路系統相位落後的現象,在閉迴路外加入零相位誤差追蹤控制器作為系統之前饋控制器。如此整體控制架構由擾動觀測器及重複性控制器提供對於外擾的強健性,以PD控制器增進系統之穩定性,最後再由前饋控制器提昇整體系統的軌跡追蹤性能。為達到電鍍品質,上下料系統追隨電鍍區輸送帶速度之馬達轉速至少為3000rpm,經由實驗之軌跡驗證,本系統於此轉速操作下,控制器能有效地抑制阻滯力的影響及閉迴路相位落後的問題,且定位精度可達到10μm,遠優於系統定位精度之100μm需求。
In this thesis, the primary target is to design a capable following control method implemented on the associated robotic-manipulator system for load/unload process of the electro-plating system in IC packaging application. Servo motor is employed for each axis of the manipulator system. The cogging force generated during of motor and the phase lag apparent in closed-loop system affect the motion velocity and positioning precision. Therefore, a disturbance observer is designed in the velocity loop of the control system to reduce the effect of cogging force. Besides, a PD controller in the position loop is designed for an asymptotically stable system. Since the high-frequency cogging force can not be rejected effectively by the disturbance observer alone, and causes a chattering phenomenon, a repetitive controller is considered to enhance the performance of disturbance rejection. For the phase lag rejection, a zero phase error tracking controller is added as a feedforward controller in the feedback control system. Such a control system is robust to disturbance and efficient to reduction phase lag so as to have better tracking performance. For practical load/unload application in the electro-plating system, the positioning error needs to be less than 100μm at the motor speed of 3000rpm. From the experimental data, the developed system is able to achive the purpose of disturbance rejection and phase lag rejection, and the positioning error is less than 10μm under the operating speed of 3000 rpm, which outperforms the desired accurcy.
目錄

摘要..............................................................I
英文摘要.........................................................II
誌謝............................................................III
目錄.............................................................IV
圖目錄...........................................................VI
表目錄............................................................X

第一章 緒論......................................................1
1.1 前言..................................................1
1.2 文獻回顧..............................................1
1.3 論文架構..............................................3

第二章 系統數學模型之建立........................................4
2.1 研究系統架構..........................................4
2.2 伺服馬達系統之數學模式................................7
2.3 伺服馬達系統之系統鑑別...............................10

第三章 伺服控制系統之建立.......................................15
3.1. 速度迴路的擾動觀測器................................16
3.2. 位置迴路的PD控制器..................................19
3.3. 重複性控制器........................................20
3.4. 零相位誤差追蹤控制器................................23

第四章 控制器參數設計與系統模擬.................................26
4.1 控制器參數選用.......................................26
4.1.1. 擾動觀測器之設計..........................26
4.1.2. PD控制器之設計............................30
4.1.3. 重複性控制器設計..........................32
4.1.4. 零相位誤差追蹤控制器之設計................33
4.2 模擬結果.............................................36
4.2.1. 僅加入擾動觀測器之系統模擬................36
4.2.2. 閉迴路系統之系統模擬......................39
4.2.3. 加入零相位誤差追蹤控制器之系統模擬........41

第五章 實驗結果.................................................42
5.1 實驗設備.............................................42
5.2 實驗結果.............................................44
5.3 實驗結果討論.........................................55

第六章 結論與未來展望...........................................56
6.1 結論.................................................56
6.2 未來展望.............................................57

參考文獻.........................................................58

圖目錄

圖2.1 移載裝置示意圖.............................................5
圖2.2 移載裝置動作說明圖.........................................5
圖2.3 伺服系統示意圖.............................................6
圖2.4 馬達電路及負載系統示意圖...................................7
圖2.5 系統模擬及實驗結果比較圖..................................10
圖2.6 線性非時變系統方塊圖......................................11
圖2.7 ARX模型方塊圖.............................................12
圖2.8 系統模擬及實驗結果比較圖..................................13
圖3.1 系統控制方塊圖............................................16
圖3.2 擾動觀測器之工作流程方塊圖................................16
圖3.3 擾動觀測器等效方塊圖......................................17
圖3.4 擾動觀測器實現圖..........................................18
圖3.5 重複訊號產生器............................................21
圖3.6 控制系統之方塊圖..........................................22
圖3.7 重複性控制系統............................................22
圖3.8 零相位誤差追蹤控制器系統方塊圖............................24
圖3.9 加入零點之零相位誤差追蹤控制器之方塊圖....................25
圖4.1 濾波器之頻率響應圖........................................27
圖4.2 擾動觀測器系統模擬圖(1/250)...............................28
圖4.3 擾動觀測器系統模擬圖(1/1000)..............................29
圖4.4 加入PD控制器位移步階響應圖................................31
圖4.5 加入PD控制器弦波輸入響應圖................................31
圖4.6 閉迴路系統根軌跡..........................................32
圖4.7 加入重複性控制器系統根軌跡................................34
圖4.8 加入零相位誤差追蹤控制器之系統響應圖......................35
圖4.9 加入擾動觀測器之速度步階響應圖............................37
圖4.10 閉迴路系統響應圖..........................................39
圖4.11 加入零相位誤差追蹤控制器之系統響應圖......................41
圖5.1 實驗架構流程圖............................................42
圖5.2 加入擾動觀測器(DO)之實驗結果..............................44
圖5.3 加入重複性控制器(RP)及擾動觀測器(DO)之實驗結果............45
圖5.4 加入重複性控制器(RP)、PD控制器及擾動觀測器(DO)之實驗結果..46
圖5.5 加入零相位誤差追蹤控制器於閉迴路系統之實驗結果............47
圖5.6 系統之XY軸同動實驗(A組軌跡,轉速1500rpm)..................49
圖5.7 系統之XY軸同動實驗(B組軌跡,轉速1500rpm)..................51
圖5.8 系統之XY軸同動實驗(A組軌跡,轉速3000rpm)..................52
圖5.9 系統之XY軸同動實驗(B組軌跡,轉速3000rpm)..................54

表目錄

表5.1 PCI-7334軸控卡規格表.......................................43
表5.2 伺服馬達規格表.............................................43
參考文獻

[1]H. Roberto, C. T. Ming, A. George, and T. Masayoshi, “Model Reference Adaptive Control of a Two Axis Direct Drive Manipulator Arm,” IEEE Conference on Robotics and Automation, pp. 1216-1222, 1987.
[2]R. Araujo and G. Cook, “Comparison of Two Adaptive Control Methods for Robotic Applications,” IEEE Conference on Robotics and Automation, pp. 1819-1824, 1993.
[3]H. Seraji, “An Adaptive Cartesian Control Scheme for Manipulators,” Proc. IEEE Intern. Conf. Robotics and Automation, Raleigh, April 1987, Vol. 1, pp. 157-164.
[4]H. Kawasaki, T. Bito, and K. Kanzaki, “An Efficient Algorithm for the Model-based Adaptive Control of Robotic Manipulators,” IEEE Transactions on Robotics and Automation, Vol. 12, No. 3, pp. 496-503, June 1996.
[5]A. Datta and M. T. Ho, “A Modified Model Reference Adaptive Control Scheme for Rigid Robots,” IEEE Transactions on Robotics and Automation, Vol. 12, No. 3, pp. 466-470, June 1996.
[6]M. A. Durarte and R. F. Ponce, “Discrete-Time Combined Model Reference Adaptive Control,” Inter. Journal of adaptive control and signal processing, pp. 501-517, 1997.
[7]G. D. Warshaw and H. M. Schwartz, “Sampled-Data Robot Adaptive Control With Stabilizing Compensation,” The International Journal of Robotics Research, pp. 78-91, 1996.
[8]S. P. Yang, P. Y. Woo, and R. Wang, “Discrete-Time Reference Adaptive Controller Design for Robotic Manipulators,” The International Journal of Robotics Research Vol. 5, No. 3, pp. 280-289, June 1996.
[9]K. Daneshmend and H. A. Pak, “Model Reference Adaptive Control of Feed Force in Turning,” Journal of Dynamic Systems, Measurement, and Control, Vol. 108, September 1986.
[10]J. J. E. Slotine, and W. Li., “Applied Nonlinear Control,” Prentice Hall.
[11]Y. Ting, and B. Fernandez, “Sliding Control Algorithm for Fault-Tolerant Robotic Systems,” American Control Conference (ACC), Baltimore, MD, June, 1994.
[12]G. Liu and A. A. Goldenberg, “Robust Control Manipulators Based on Dynamics Decomposition,” IEEE Transaction on Robotics and Automation, Vol. 13, No. 5, pp. 783-789, October 1997.
[13]R. Shergei and U. Shaked, “Robust H∞ Nonlinear Control via Measurement Feedback,” International Journal of Robust and nonlinear Control, Vol. 7, pp. 975-987, 1997.
[14]F. Lin and R. D. Brandt, “An Optimal Control Approach to Robust Control of Robot Manipulators,” IEEE International Conference on Control Applications, Vol. 15, No.18, pp. 31-36, Dearborn, MI, 1996.
[15]W. Colbaugh and K. Glass, “Robust Adaptive Regulation of Manipulators: Theory and Experiments,” IEEE International Conference on Robotics and Automation Minneapolis, Minnesota, pp. 276-283, April 1996.
[16]M. H. Park, and K. S. Kim, “Chattering Reduction in the Position Control of Induction Motor Using the Sliding Mode,” IEEE Trans. Power Electrronics, Vol.6, No.3, pp.317-325,1991.
[17]L. Jolly, M. A. Jabar, and Q. Liu, “Design Optimization of Permanent Magnet Motors Using Response Surface Methodology and Genetic Algorithms,” IEEE Transactions on Magnetics, Vol. 41, No. 10, pp. 3928-3930, Oct. 2005.
[18]T. Umeno and T. Hori, “Robust Speed Control of DC Servomotor Using Modern Two Degree-of-Freedom Controller Design,” IEEE Transaction on Industrial Electronics, Vol. 38, No. 5, October 1991.
[19]M. Tomizuka, “Zero Phase Error Tracking Algorithm for Digital Control,” Journal of Dynamic Systems, Measurement and Control, Vol. 109, March 1987.
[20]K. K. Chew and M. Tomizuka, “Digital Control of Repetitive Errors in Disk Drive Systems,” IEEE Control Systems Magazine, pp.16-19, 1990.
[21]E. D. Tung, G. Answar and M. Tomizuka, “Low Velocity Friction Compensation and Feedforward Solution Based on Repetitive Control,” ASME J. of Dynamic Systems, Measurement, and Control, Vol. 115, pp.279-284, 1993.
[22]J. H. Moon, M. N. Lee and M. J. Chung, “Repetitive Control for the Track-Following Servo System of an Optical Disk Drive,” IEEE Transactions on Control Systems Technology, Vol. 6, No. 5, pp. 663-670, 1998.
[23]S. Simani, C. Fantuzzi, and R. J. Patton, “Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques”. Springer-Verlag, spring, 2002.
[24]L. Ljung, “System Identification : Theory for the User”, 2nd. Prentice Hall PTR, 1998.
[25]A. J. Isaksson, “Identification of ARX-Models Subject to Missing Data”, IEEE Transactions on Automatic Control, Vol. 38, No. 5, May, 1993, p 813-819.
[26]R. J. A. Little, and D. B. Rubin, “Statistical Analysis with Missing Data”, 2nd. New York, Wiley, 2002.
[27]C. Canudas de Wit, H. Olsson, K. J. Astrom, and P. Lischinskyk, “A New Model for Control of System with Friction,” IEEE Trans, On Automatic Control, Vol. 40, No. 3, pp. 419-425, March 1995.
[28]Tung, E. D. ,Anwar, G. and Tomizuka, M., “Low Velocity Friction Compensation and Feedforward Solution Based on Repetitive Control,” Journal of Dynamic Systems, Measurement and Control, Trans. Of the ASME, Vol. 115, n 2A, pp. 279-283, Jun. 1993.
[29]T.Umeno, Y.Hori, “Robust Speed Control of DC Servomotors Using Modern Two Degrees-of-Freedom Controller Design.” IEEE Trans. on Industrial Electronics., Vol. 38, No. 5, pp. 363-368, Oct. 1991.
[30]Kempf, C. J. and Kobayashi, S., “Disturbance Observer and Feedforward Design for a High-Speed Direct-Drive Positioning Table,” IEEE Trans. on Control System Technology, Vol. 7, No.5, pp. 513-526, 1999.
[31]Lee, H. S. and Tomizuka, M., “Robust Motion Controller Design For High-Accuracy Positioning Systems,” IEEE Trans. on Industrial Electronics, Vol. 43, No. 1, pp. 48-55, 1996
[32]K. Ogata, “Modern Control Engineering”, 4th, Prentice Hall, 2002.
[33]M. Tomizuka, T. Tsao, K.Chew, “Discrete Time Domain Analysis and Synthesis of Repetitive Controllers,” American Control Conference, pp. 65-68, 1988.
[34]K. Chew, M. Tomizuka, “Steady State and Stochastic Performance of a Modified Discrete Time Prototype Repetitive Controller,” Journal of Dynamic Systems and Control, Vol. 112, pp. 35-41, Mar. 1990.
[35]B.A. Francis, W.M. Wonham, “Internal Model Principle for Linear Multivariable Regulators,” Applied Mathemativs and Optimization, Vol. 2, No. 2, pp. 170-194.
[36]M. Tomizuka, K. K. Chew, W. C. Yang, “Disturbance Rejection Through an External Model,” Journal of Dynamic Systems, Measurement, and Control, Vol. 112, pp. 559-564, Dec. 1990.
[37]G. P. Liua, and S. Daley, “Optimal-tuning PID control for industrial systems”, Control Engineering Practice, Vol.9, pp.1185-1194, 2001.
[38]G. P. Liua, and S. Daley, “Optimal-tuning nonlinear PID control of hydraulic systems”, Control Engineering Practice, Vol.8, pp. 1045-1053, 2000.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top