跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/09 22:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱綉惠
研究生(外文):Hsiu-Hui Chiu
論文名稱:重力、表面張力及表面粗糙度對微流體流動時間影響之研究
論文名稱(外文):Study on the Influence of Gravity, Surface Tension and Surface Roughness on Microfluidic Flow Time
指導教授:鍾文仁鍾文仁引用關係
指導教授(外文):Wen-Ren Jong
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:118
中文關鍵詞:毛細現象那維爾-史托克斯方程式微流體表面粗糙度
外文關鍵詞:Surface RoughnessMicrofluidicCapillary PhenomenaNavier-Stokes Equation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1090
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著電子、生醫、通訊及航太等科技的進步,工程科技界莫不努力探求並試圖掌握尺度的最小極限,使得細微加工技術之尺寸由傳統的毫米階段進步到微米、奈米的階段,大量增加了高附加價值與高產值產品的需求,且由於微小系統能廣範應用於半導體、生醫、化學、能源、光電等產業,微生醫、覆晶底膠充填與微流體領域受到重視,由毛細現象所導致的充填問題、驅動原理及液體流動的控制,都變得相當的重要。本研究基於如此的動機與目的,進行微流道內液體之毛細流動現象及時間的探討。
本文主要針對微流體流動時間的理論作推導,探討在重力及毛細力共同驅動下之微流體流動時間及流動狀態,並將模型簡化為一維的流動狀態,以那維爾-史托克斯方程式作為基礎,推導出其流動時間方程式;接著搭配不同間隙高度實驗模型,透過改變儲液槽內流體高度進行微流體的流動實驗,探討重力與毛細作用力的影響力,並將實驗結果與理論推導之流動時間相互比較驗證。由結果顯示,兩者之間有很好的一致性,且隨著微流道間隙越小時,重力的驅動力對流動時間的影響則越不明顯,即在越微小間隙的流道中毛細力成為驅動液體運動的主要動力來源;接著針對不同粗糙度表面對微流體流動時間的影響作研究,利用二氧化碳雷射雕刻、微輪磨加工及SU-8光阻製程,分別加工出細切面(粗糙度值2.0~6.3微米)、精切面(粗糙度值0.25~1.6微米)及超光面(粗糙度值0.01~0.20微米)之壓克力平板流道,透過改變儲液槽內流體高度使重力產生變化來進行微流體的流動實驗,以探討粗糙度對微流體流動時間的影響。由結果顯示粗糙度值越大,微流體的流動速度越快,而其波前越不穩定,且隨著重力驅動力的增加,不同粗糙度模型之間流動時間差距越大。
Due to the great advancement in fields of electron, biomedical, communication and aerospace technology, the size in micromachining technology has progressed from millimeter to micrometer and even to nanometer by increasing demands of high added value and high output products. In addition, the micro system can be applied in many industries such as semi-conductor, bio-medical, chemical, energy and photoelectric industries. Therefore, the filling behavior, driving principle, and control of flowing caused by capillarity phenomena become crucial.
In this paper, flows in rectangular microchannels driven by capillary force and gravity are discussed. The theoretical mathematical model of flow in microchannel driven by capillary force and gravity is formulated from the Navier-Stokes Equations. A close form solution to predict flow time was developed, and experiments have been performed to investigate and verify the flow times in microchannel. From the results, the predicted flow times show reasonably good agreement with the corresponding experimental flow times. Moreover, when the microchannel height is small, the effects of gravity force becomes less obvious, namely the capillary becomes the dominate source to drive microfluidic. Besides, the influence of surface roughness in microchannel is studied, and three different methods of machining were used to manufacture those microchannels, and experiments have been performed to investigate and verify the flow times in microchannel. From the results, the surface roughness increased, then the flow time is less, and the flow-front of microfluidic becomes more unsteady.
目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VIII
表目錄 XII
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 本文架構 2
第二章 重力及表面張力對微流體流動時間影響之研究 3
摘要 3
2-1 前言 4
2-1-1 微流體系統的流動控制 4
2-1-2 微流體的應用 5
2-1-3 文獻探討 5
2-2 理論分析 6
2-2-1 楊氏定律 6
2-2-2 微流道內表面能與毛細作用力 7
2-2-3 微流體流動時間的理論方程式 8
2-3 實驗 12
2-3-1 實驗設備 13
2-3-2 材料性質 14
2-3-3 實驗方 16
2-4 實驗結果 18
2-5 結論 27
第三章 The Influence of Gravity and Surface Tension on Microfluidic Flow Time 28
Abstract 28
3-1 Preface 29
3-1-1 Flow Control of Microfluidic System 29
3-1-2 Application of the Microfluidic 30
3-1-3 Previous paper study 30
3-2 Theoretical Analysis 32
3-2-1 Young’s Equation 32
3-2-2 Surface Energy and Capillary of Microfluidic System 32
3-2-3 Theoretical Formula of Micro-fluidic Flow Time 34
3-3 Experiment 38
3-3-1 Experimental Equipments 39
3-3-2 Material Properties 40
3-3-3 Experimental Method 42
3-4 Experimental Results 45
3-5 Conclusion 53
第四章 不同表面粗糙度對微流體流動時間影響之研究 54
摘要 54
4-1 前言 55
4-1-1 文獻探討 55
4-2 理論分析 56
4-2-1 楊氏定律 56
4-2-2 接觸角 57
4-2-3 粗糙表面效應 58
4-3 實驗設計 59
4-3-1 實驗設備 60
4-3-2 模型製作 61
4-3-3 表面粗糙度 66
4-3-4 材料性質 68
4-3-5 實驗方法 70
4-4 實驗結果 72
4-5 結論 78
第五章 The Influence of Different Surface Roughness on Microfluidic Flow Time 79
Abstract 79
5-1 Preface 80
5-1-1 Literature Reviews 80
5-2 Theoretical Analysis 82
5-2-1 Young’s Equation 82
5-2-2 Contact Angle 83
5-2-3 Effects of Surface Roughness 84
5-3 Experimental Design 86
5-3-1 Experimental Equipments 86
5-3-2 Manufacture of Microchannel 87
5-3-3 Surface Roughness 93
5-3-4 Material Properties 95
5-3-5 Experimental Method 96
5-4 Experimental Results 98
5-5 Conclusions 105
第六章 結論 106
6-1 研究成果 106
6-2 未來展望 107
參考文獻 108
附 件 111
簡 歷 118

圖目錄
圖2-1 表面張力與接觸角關係示意圖 7
圖2-2 微流體流動示意圖 8
圖2-3 儲液槽液面高度隨時間變化示意圖 12
圖2-4 福裕全自動平面磨床 FSG-1632ADII型 12
圖2-5 實驗器材配置圖 13
圖2-6 壓克力實驗模型圖 14
圖2-7 表面張力計 15
圖2-8 矽油接觸角變化量測圖 16
圖2-9 實驗設備上視圖 17
圖2-10 實驗流程圖 17
圖2-11 實驗設備圖 18
圖2-12 微流體流動之狀況 18
圖2-13 理論值與平均實驗擷取值之流動時間曲線圖 20
圖2-14 間隙高度h = 0.20mm時之理論與實驗流動時間曲線圖 21
圖2-15 間隙高度h = 0.15mm時之理論與實驗流動時間曲線圖 22
圖2-16 間隙高度h = 0.10mm時之理論與實驗流動時間曲線圖 23
圖2-17 間隙高度h = 0.05mm時之理論與實驗流動時間曲線圖 24
Fig. 3-1 Schema of surface tension and contant angle 32
Fig. 3-2 Schema of flow process 34
Fig. 3-3 Schema of that height of silicon oil is changing with time 38
Fig. 3-4 Fully automatic grinding machine (FSG-1632ADII) 39
Fig. 3-5 Experimental equipments 39
Fig. 3-6 Experimental model geometry 40
Fig. 3-7 Drop shape analysis system (DSA Mk2) 41
Fig. 3-8 Measurement of contact angle 42
Fig. 3-9 Configuration of dispensing layout 43
Fig. 3-10 Process of experiments 43
Fig. 3-11 Experimental equipments 44
Fig. 3-12 Microfluidic flow-front position image by CCD 44
Fig. 3-13 Flow-front position with time for h = 0.20mm, H = 0 46
Fig. 3-14 Flow-front position with time for h = 0.20mm 47
Fig. 3-15 Flow-front position with time for h = 0.15mm 48
Fig. 3-16 Flow-front position with time for h = 0.10mm 49
Fig. 3-17 Flow-front position with time for h = 0.05mm 50
圖4-1 表面張力與接觸角關係示意圖 57
圖4-2 親水性現象 57
圖4-3 疏水性現象 58
圖4-4 Wenzel model 59
圖4-5 Cassie model 59
圖4-6 實驗器材配置圖 60
圖4-7 不同加工法之實驗模型 61
圖4-8 微機電系統製造技術分類 62
圖4-9 二氧化碳雷射雕刻機(大華技術學院提供) 62
圖4-10 福裕全自動平面磨床 FSG-1632ADII型(大鉅精密加工廠提供) 63
圖4-11 SU-8光阻製程使用設備(國家輻射中心提供) 63
圖4-12 二氧化碳雷射雕刻之加工表面情形 64
圖4-13 600#粒度之鑽石磨輪(大鉅精密加工廠提供) 64
圖4-14 SU-8光阻塗佈流程 66
圖4-15 中心線平均粗糙度定義圖 67
圖4-16 表面粗度計(大華技術學院提供) 68
圖4-17 表面張力計 69
圖4-18 接觸角變化量測圖 70
圖4-19 實驗設備上視圖 71
圖4-20 實驗流程圖 71
圖4-21 二氧化碳雷射雕刻之微流道表面狀況 73
圖4-22 微輪磨加工之微流道表面狀況 73
圖4-23 SU-8光阻製程之微流道表面狀況 74
圖4-24 儲液槽高度H = 0 cm時之流動時間曲線圖 74
圖4-25 儲液槽高度H = 1 cm時之流動時間曲線圖 75
圖4-26 儲液槽高度H = 2 cm時之流動時間曲線圖 75
圖4-27 儲液槽高度H = 3 cm時之流動時間曲線圖 76
圖4-28 儲液槽高度H = 4 cm時之流動時間曲線圖 76
圖4-29 儲液槽高度H = 5 cm時之流動時間曲線圖 77
圖4-30 不同加工法之微流體流動波前狀況 77
Fig. 5-1 Schema of surface tension and contact angle 83
Fig. 5-2 hydrophilic 83
Fig. 5-3 hydrophobic 84
Fig. 5-4 Wenzel model 85
Fig. 5-5 Cassie model 85
Fig. 5-6 Experimental equipments 86
Fig. 5-7 Experimental model geometry 87
Fig. 5-8 Classify of MEMS technology 88
Fig. 5-9 CO2 laser cutter machine 88
Fig. 5-10 Micro-grinding machine (FSG-1632ADII) 89
Fig. 5-11 SU-8 UV-LIGA process machines 89
Fig. 5-12 Surface condition of CO2 laser processed 90
Fig. 5-13 Diamond grinding wheel of 600# granule 91
Fig. 5-14 Procedures of SU-8 photoresist materials coating 93
Fig. 5-15 The calculation procedures of 94
Fig. 5-16 Portable surface roughness tester 95
Fig. 5-17 Drop shape analysis system 96
Fig. 5-18 Measurement of contact angle 96
Fig. 5-19 Configuration of dispensing layout 97
Fig. 5-20 Process of experiments 98
Fig. 5-21 Microchannel surface condition by CO2 laser process 100
Fig. 5-22 Microchannel surface condition by microgrinding process 100
Fig. 5-23 Microchannel surface condition by SU-8 UV-LIGA process 101
Fig. 5-24 Flow-front position with time for H = 0 101
Fig. 5-25 Flow-front position with time for H = 1 102
Fig. 5-26 Flow-front position with time for H = 2 102
Fig. 5-27 Flow-front position with time for H = 3 103
Fig. 5-28 Flow-front position with time for H = 4 103
Fig. 5-29 Flow-front position with time for H = 5 104
Fig. 5-30 Flow-front of three different roughness models 104

表目錄
表2-1 四種間隙高度之實驗模型設計尺寸 14
表2-2 矽油之材料參數表(25℃) 15
表2-3 0.20 mm間隙高之流動時間總比較表 25
表2-4 0.15 mm間隙高之流動時間總比較表 25
表2-5 0.10 mm間隙高之流動時間總比較表 25
表2-6 0.05 mm間隙高之流動時間總比較表 25
表2-7 不同間隙高度微流道於流動完成時所需之時間比較表 26
表2-8 儲液槽高度H為定值及隨時間變化時之流動時間比較表 26
Table 3-1 The microchannel size of experimental model 40
Table 3-2 Material properties of silicon oil 41
Table 3-3 Flow time for h = 0.20mm 51
Table 3-4 Flow time for h = 0.15mm 51
Table 3-5 Flow time for h = 0.10mm 51
Table 3-6 Flow time for h = 0.05mm 51
Table 3-7 The flow time for theoretical prediction and experimental results 52
Table 3-8 The flow time prediction for Equation (3.17) and Equation (3.22) 52
表4-1 表面粗糙度量測對應範圍表 67
表4-2 不同加工法之表面粗糙度量測值 68
表4-3 材料參數表(25℃) 69
表4-4 不同粗糙度微流道之流動時間總比較表 77
Table 5-1 The roughness classes 94
Table 5-2 The surface roughness of three different processing models 95
Table 5-3 Material properties of silicone oil 95
Table 5-4 Flow times of three different roughness models 104
[1]Y. Yang, X. Ye, Z. Zhou, W. Fang and Y. Li, “A Thermally Actuated Micropump”, Transducers, 95: Int. Conf. Solid-state Sensors and Actuators, Vol. 3, pp. 81-82, 1995.
[2]W. Zhang and C. H. Ahn, “A Bi-Directional Magnetic Micropump on a Silicon Wafer”, Solid-state Sensor and Actuator Workshop, pp. 94-97, 1996.
[3]R. Zerlenge, A. Richter and H. Sandmaier, “A Micro Membrane Pump with Electrostatic Actuation”, IEEE Micro Electro Mechanical Systems, an Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, pp. 19-24, 1992.
[4]M. Koch, G. R. Evans and A. Brunnschweiler, “The Dynamicmicropump Driven with a Screen Printed PZT Actuator”, Journal of Micromesh & Microeng, Vol. 8, pp. 119-122, 1998.
[5]O. C. Jeong and S. S. Yang, “Fabrication of a Thermopneumatic Micropump with a Corrugated P+ Diaphragm”, Transducers 99: Int. Conf. Solid-State Sensers and Actuators, Vol. 2, pp. 1780-1783, 1999.
[6]S. K. Cho, H. Moon and C. J. Kim, “Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits”, Journal of Microelectromechanical Systems, Vol. 12, pp.70-80, 2003.
[7]A. A. Darhuber and J. P. Valentino, “Thermocapillary Actuation of Droplets on Chemically Patterned Surfaces by Programmable Microheater Arrays”, Journal of Microelectromechanical Systems, Vol. 12, pp.873-879, 2003.
[8]M. J. Madou, L. J. Lee, K. W. Koelling, S. Daunert, S. Lai, C. G. Koh, Y. J. Juang, L. Yu, and Y. Lu, “Design Fabrication of Polymer Microfluidic Platforms for Biomedical Application”, ANTEC-SPC 59th, Vol. 3, pp.2534-2538, 2001
[9]P. F. Man, C. H. Mastrangelo, M. A. Burns and D. T. Burke, “Microfabricated Capillary-Driven Stop Valve and Sample Injector”, International Conference on Micro Electromechanical Systems, pp. 45-50, 1997.
[10]E. W. Washburn, “The Dynamics of Capillary Flow”, the Physical Review, 17(3), pp.273-283, 1921.
[11]M. K. Schwiebert and W. H. Leong, “Underfill Flow as Viscous Flow between Parallel Plates Driven by Capillary Action”, IEEE Transactions on Components, Packaging, and Manufacturing Technology Part C, Vol. 19, No.2, pp.133-137, April 1996.
[12]S. Han and K. K. Wang, “Analysis of the Flow of Encapsulant During Underfill Encapsulation of Flip-Chips”, IEEE Transactions on Components, Packaging, and Manufacturing Technology Part B, Vol. 20, No.4, pp.424-433, Nov. 1997.
[13]G. Ni, M. H. Gordon, W. F. Schmidt and A. Muyshondt, “Experimental and Numerical Study of Underfill Encapsulation of Flip-Chips Using Conductive Epoxy Polymer Bumps”, IEEE Electronic Components, and Technology Conference, 47th, pp.859-865, 1997.
[14]L. T. Chen, “The Study of Underfill Phenomena of Flip-Chips Packages”, Master Thesis, Chung Yuan Christian University, Taiwan, 2001.
[15]Q. Weilin, G. M. Mala and Dongqing Li, “Pressure-driven Water Flows in Trapezoidal Silicon Microchannels”, Int. J. Heat and Mass Transfer 43, pp. 353-364, 2000.
[16]D. Erickson, D. Li and C. B. Park, “Numerical Simulations of Capillary-Driven Flows in Nonuniform Cross-Sectional Capillaries” Journal of Colloid and Interface Science 250, pp.422-430, 2002.
[17]W. B. Young, “Analysis of Capillary Flows in Non-Uniform Cross-Sectional Capillaries” Colloids and Surfaces A: Physicochem. Eng. Aspects 234, pp.123-128, 2004.
[18]T. Young, “An Essay on the Cohesion of Fluid” Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences Vol. 95, pp.65-87, 1805.
[19]I. H. Shames, “Mechanics of Fluids”, 2nd ed. New York: McGraw-Hill, pp.341, 1982.
[20]J. S. Tu, “The Relationship between Pressure Drop and Surface Roughness in Microchannel Flow”, Master Thesis, National Tsing Hua University, Taiwan, 2002.
[21]P. Y. Wu and W. A. Little, “Measurement of Friction Factor for Flow of Glass in Very Fine Channels Used for Microminiature” Joule-Thompson Refrigerators, Cryogenics 24(8), pp. 273-277, 1983.
[22]R. N. Wenzel, “Resistance of Solid Surfaces to Wetting by Water”, Industrial and Engineering Chemistry, Vol. 28, pp. 988-994, 1936.
[23]A. B. D. Cassie and S. Baxter, “Wettability of Porous Surfaces“, Transactions of the Faraday Society, Vol. 40, pp. 546-551, 1994.
[24]I. H. Shihi, “Investigation on the Effects of Surface Microstructures on Static Contact Angles and Surface Adhesion Phenomena”, Master Thesis, National Chiao Tung University, Taiwan, 2005.
[25]Instrument Technology Research Center, “Micro Electro Mechanical Systems Technology & Application”, pp. 142, 2003.
[26]R. C. Crafer and P. J. Oakley, “Laser Processing in Manufacturing”, London: Chapman & Hall, 1993.
[27]http://www.microchem.com/
[28]B. H. Amstead, Phillip F. Ostwald and Myron L. Begeman, “Manufacturing Processes”, 8ed., John Wiley & Sons, Inc., pp. 255, 1986.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top