跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 01:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃智盈
研究生(外文):Chih-Ying Huang
論文名稱:含光電致動器的平板振動分析
論文名稱(外文):Vibration Analysis of Plates with Opto-Electromechanical Actuator
指導教授:施延欣施延欣引用關係
指導教授(外文):Yan-Shin Shih
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:50
中文關鍵詞:振動平板阻尼光電致動器長方形平板
外文關鍵詞:opto-electromechanical actuatorsvibrationdampingrectangular plate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
考慮一個長方形平板,受光電致動器產生的外力影響,且四端均為簡支撐之平板的振動分析。依據 Tzou and Fu,得到長方形平板的運動方程式,在振動受到光電致動器的作用為了清楚地看致動器對長方形平板的影響力則不考慮平板阻尼係數的影響。本文中運用Galerkin 的方法,將統御方程式化簡為一個以時間為變數的 Mathieu 方程式,至於暫態振動的部分,則使用四階 Runge-Kutta 的方法來描述振動對時間時的關係表分別繪出,藉此來探討其致動器的擺放位置對長方形平板振動的影響關係。
The analysis of vibration for the rectangular plate under out-plane moment from opto-electromechanical actuators are considered. The rectangular plate is simply supported at all edges. The equation of rectangular plate motion including out-plane moment based on Tzou and Fu is presented. In order to show clearly the effects of active damping, structural damping is not considered. The equations of vibration are reduced to an ordinary differential equation by assuming mode shape and Galerkin’s procedure. Using Runge-Kutta method, the amplitude-time is determined. By discussing the effective control moments depend on the locations of actuators to the vibration of a rectangular plate.
中文摘要 ………………………………………………………………………… i
Abstract …………………………………………………………………………. ii
誌 謝 ………………………………………………………………………….. iii
Contents ………………………………………………………………………….. iv
List of table ……………………………………………………………………… vi
List of figures ……………………………………………………………………. vi
Nomenclature …………………………………………………………………... viii
Chapter 1 Introduction ………………………………………………………... 1
Chapter 2 Governing Equations ………………………………………………. 3
2.1 An opto-electromechanical actuator …………………………………… 3
2.2 Equations of photovoltaic, pyroelectric , thermal , and piezoelectric effect..5
2.3 Distributed opto-electromechanical actuator …………………………... 7
2.4 Equations of motion for simply supported rectangular plate ………….. 8
Chapter 3 Analysis of vibration ……………………………………………..... 9
3.1. Displacement function ………………………………………………... 9
3.2 Applying Galerkin’s method …………………………………………. 10

Chapter 4 Results and discussion ……………………………………………. 12
4.1 The time history temperature response and displacement response .....13
4.2 The transient vibration for case 1 and case 2 ………………............... 14
Chapter 5 Conclusions ………………………………………………………. 16
References ………………………………………………………………………. 17
Table …………………………………………………………………………….. 20
Figures …………………………………………………………………………... 21

LIST OF TABLE
Table 1. Parameters. .......……………………………………........................... 20

LIST OF FIGURES
Fig .1. Opto-electromechanical actuator ………………………….................. 21
Fig.2. Plate with opto-electromechanical actuators ………………................... 22
Fig.3 Opto-electromechanical actuators under irradiation of light … ................23
Fig.4. Temperature response ( ) of the optical actuator for ........ 24
Fig.5. Temperature response ( ) of the optical actuator for I= ........ 25
Fig.6. Temperature response ( ) of the optical actuator for I= ........ 26
Fig.7. Displacement response of the optical actuator for I= .................. 27
Fig.8. Displacement response of the optical actuator for I= ................ 28
Fig.9. Displacement response of the optical actuator for I= ............... 29
Fig.10. (a) Case1 (b) Case2 ………………………………………...................... 30
Fig.11. Mode (1,1) response for I= , Case 1 ……………................... 31
Fig.12.Mode (1,1) response for I= , Case 1 …………….................. 32
Fig.13.Mode (1,2) response for I= , Case 1 ……………................. 33
Fig.14.Mode (2,1) response for I= , Case 1 ……………..................34
Fig.15.Mode (1,1) response for I= , Case 1 ……………................ 35
Fig.16. Mode (1,1) response for I= , Case 2 …………................... 36
Fig.17.Mode (1,1) response for I= , Case 2 …………................... 37
Fig.18.Mode (1,2) response for I= , Case 2 ……….…….............. 38
Fig.19.Mode (2,1) response for I= , Case 2 ……………............... 39
Fig.20.Mode (1,1) response for I= , Case 2 …………................... 40
[1] A. Baz and S. Poh, “A new class of distributed sensors”, Journal of Vibration and
Acoustics, Vol.119, pp. 582-589, 1997.
[2] Y. Wang and J. C. Slater, “A comparison of conventional and impedance methods for modeling piezoelectric materials actuation in smart structures”, Journal of Vibration and Acoustics, Vol.120, pp. 685-688, 1998.
[3] H. R. Shih, “Distributed vibration sensing and control of a piezoelectric laminated curved beam”, Journal of Smart Materials and Structures, Vol.9, pp. 761-766, 1993.
[4] S. Y. Wang, S. T. Quek, and K. K. Ang, “Vibration control of smart piezoelectric composite plates”, Journal of Smart Materials and Structures, Vol.10, pp. 637-644, 2001.
[5] H. S. Tzou and L. A. Editors, “Dynamics and control of distributed parameter systems”, Cambridge University Press, New York, N.Y., 1998.
[6] H. S. Tzou and H. Fu, “A study of segmentation of distributed sensors and actuators, Patr-1, theoretical analysis and Part-2, parametric study and vibration controls”, Journal of Sound &Vibration, Vol.172, No.2, pp. 247-276, 1994.


[7] H. S. Tzou and M. Gadre, “Theoretical analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distributed vibration controls”, Journal of Sound and Vibration, Vol.132, No.3, pp. 433-450, 1989.
[8] T. Fukuda, S. Hattori, F. Arai, H. Matsuura, T. Hiramatsu, Y. Ikeda and A. Maekawa, “Characteristics of optical actuator servomechanisms using bimorph optical piezoelectric actuator”, Proceedings of 1993 IEEE Robotics and Automation Conference, pp. 618-623, 1993.
[9] T. Nakada, D. H. Cao and Y. Morikawa, “Proposal of optical servo-system and characteristics of PLZT element for optical actuator”, Journal of Mechanical Engineering Laboratory(Japanese), Vol.46, pp. 631-372, 1992.
[10] Y. Morikawa, T. Nakada and D. H. Cao, “Estimation of dynamic characteristics of bimorph type optical actuator and proposal of opto-pneu-matic servo system”, Journal of Mechanical Engineering Laboratory(Japanese), Vol.47, pp. 237-246, 1993.
[11] P. S. Brody, “Optomechanical bimorph actuator”, Ferroelectrics Vol.50, pp. 27-32, 1983.
[12] K. Uchino, “Photostrictive actuators”, Proceedings of 1990 IEEE Ultrasonics Symposium, pp. 721-723, 1998.

[13] J. Suski, D. Largeau, A. Steyer, van de Pol, F. C. M. and F. R. Blom, “Optically activated ZnO/SiO2/Si cantilever beams”, Sensors & Actuators, Vol.24, pp. 221-225, 1990.
[14]B.Liu, H.S.Tzou, “Distributed photostrictive actuation and opto- piezothermoelasticity applied to vibration control of plates”, Journal of Vibration and Acoustics, Vol.120, pp. 937-943, 1998.
[15] H.R. Shih, H.S. Tzou, “Opto-piezothermoelastic constitutive modeling of a new 2-d photostrictive composite plate actuator”, Proceedings of ASME IMECE 61 (2000) 1-8.
[16] H.R Shih, H.S. Tzou, and M. Saypuri, “Structural vibration control using spatially configured opto-electromechanical actuators”, Journal of Sound and Vibration, Vol.284, pp. 361-378, 2005.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊