跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 19:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳定遠
研究生(外文):Ting-Yuan Wu
論文名稱:手機數位相機防手振機構之最佳化
論文名稱(外文):Optical Design of the Anti-Shake Mechanism of Digital Cameras in Mobile Phones
指導教授:趙昌博黃健生黃健生引用關係
指導教授(外文):Paul C.-P. ChaoJeng-Sheng Huang
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:57
中文關鍵詞:靈敏度防手振音圈馬達(VCMs)基因演算法(GA)
外文關鍵詞:voice coil motors (VCMs)sensitivity.Anti-shakeGenetic Algorithm (GA)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
目前市面上的照像手機越來越普及了,畫素也不斷的提高。但衍生出來的問題便是手機手振後所造成的影像模糊。而本研究則是提出一個新穎防手振機構,並以影像感測元件(CMOS/CCD)來進行反手振的補償,其大小為1.5cm×1.5cm。首先設計出具備二軸運動的機構,其運動方向與影像呈垂直及水平移動,並且以二個音圈馬達(VCMs)來進行驅動,做為達到補償晃動所造成之影像模糊。而影像感測元件則安置在補償振動機構上,其優點在於補償方式為移動影像感測器元件,與鏡片组無關,所以適用於各式之鏡片組。而最佳化的過程則是透過基因演算法(GA)對VCMs力量的靈敏度來決定,並進行機構尺寸、重量、材質、電磁力等等來作通盤考慮,使得機構整體效率能越高越好。
Cameras in cell phones in the current market become popular recently. The number of pixels in the cameras is continuously increased. One of the next challenges of the cell camera development is to avoid the picture blurring caused by hand shakes. This proposes an novel anti-shake mechanism in size smaller than 1.5cm x 1.5 cm and image sensor component (CMOS/CCD) to realize the function of anti-shake. The mechanism consists of two axial motion, and it can move along vertical and horizontal directions. The actuation forces are realized by two voice coil motors (VCMs) for the compensation of image blurring caused by hand shake. The image sensor component was installed at shake compensation mechanism, the advantage of which is by the method of compensation to act as the image sensor component on movement without connection with lens, and thus it is applicable to each kind of lens set. The optimization on mechanism size and materials are next conducted via Genetic Algorithm (GA), in the purpose of maximizing the sensitivity of the driving VCM forces to net weight of moving parts of the designed mechanism. The mechanism is finally realized and proven efficient as predicted.
Table of Contents
摘 要---------------------------------------------------------------------------------------------I
Abstract-------------------------------------------------------------------------------------------II
致 謝-------------------------------------------------------------------------------------------III
Table of Contents-------------------------------------------------------------------------------IV
Figure Captions------------------------------------------------------------------------------VI
Table titles-------------------------------------------------------------------------------------VIII
Nomenclature------------------------------------------------------------------------------IX
1. Introduction------------------------------------------------------------------------------------1
2. Mechanism Design and Mathematical Modeling-----------------------------------------3
2.1 Compensate the principle for anti-shake optical system of mechanism-----------3
2.2 Anti-shake optical system of mechanism design-------------------------------------3
2.3 Mathematical modeling------------------------------------------------------------------4
2.3.1 Dynamic modeling of actuator----------------------------------------------------5
2.3.2 Design of voice coil motors--------------------------------------------------------6
2.4 Analysis of actuator----------------------------------------------------------------------7
2.4.1 Establish of equivalent magnetic circuit-----------------------------------------7
3. Analysis of ANSYS-------------------------------------------------------------------------10
3.1 Analysis of magnetic forces--------------------------------------------------------10
3.2 Analysis result and uniformity-----------------------------------------------------10
4. Optimal design-------------------------------------------------------------------------------12
4.1 Genetic Algorithms (GA)-----------------------------------------------------------12
4.2 Parameter design---------------------------------------------------------------------13
4.3 Simulated results of GA optimization-----------------------------------------14
5. Conclusions and Further Works-----------------------------------------------------------15
5.1 Conclusions---------------------------------------------------------------------------15
5.2 Further works-------------------------------------------------------------------------15
Reference----------------------------------------------------------------------------------------16
Figure---------------------------------------------------------------------------------------------18
Table----------------------------------------------------------------------------------------------42
Autobiography----------------------------------------------------------------------------------46

Figure Captions
Fig. 1 Anti-shake optical system compensation method of the image sensor
component element.---------------------------------------------------------------------18
Fig. 2 Anti-shake optical system of assembly drawing.-----------------------------------19
Fig. 3 Anti-shake optical system of mechanism explosion.-------------------------------20
Fig. 4 Anti-shake optical system mechanism.----------------------------------------------21
Fig. 5 Magnetic resistance distribution of the actuator.-----------------------------------22
Fig. 6 In hysteresis curve of working point.------------------------------------------------23
Fig. 7 Equivalent magnetic circuit model of the actuator.--------------------------------24
Fig. 8 Simple movements of the equivalent magnetic circuit model of the actuator.-25
Fig. 9 Simple movements of the equivalent magnetic circuit model of the actuator.-26
Fig. 10 The magnetic flux density of air gap. ----------------------------------------------27
Fig. 11 Model of the actuator in ANSYS. --------------------------------------------------28
Fig. 12 Mesh model of the actuator.---------------------------------------------------------29
Fig. 13 Magnetic flux distribution of the actuator.-----------------------------------------30
Fig. 14 Magnetic flux density of the actuator.----------------------------------------------31
Fig. 15 Appearance and size mark of the actuator.-----------------------------------------32
Fig. 16 The test on magnetic flux density of air gap proceeded in np line section.----33
Fig. 17 The curve diagram of magnetic flux density from air gap.----------------------34
Fig. 18 The voice coil motors of symbol on each portion.--------------------------------35
Fig. 19The fix base seat of symbol on each portion.---------------------------------------36
Fig. 20 The horizontal platform of symbol on each portion.-----------------------------37
Fig. 21 The vertical platform of symbol on each portion.---------------------------------38
Fig. 22 The bobbin of symbol on each portion.--------------------------------------------39
Fig. 23 The optimal dimension diagram.----------------------------------------------------40
Fig. 24 The curve diagram of magnetic flux density of air gap.-------------------------41
Table Titles
Table 1 The dimension of each portion.-----------------------------------------------------42
Table 2 Air gap magnetic-flux density and uniformity.-----------------------------------43
Table 3 Constraints parameter.---------------------------------------------------------------44
Table 4 The optimal design dimension.-----------------------------------------------------45
[1]Kusaka, H., Tsuchida, Y., Shimohata, T., “Control technology for optical image stabilization,” SMPTE Journal, v 111, n 12, December, 2002, pp. 609-615.
[2]Hayashi, T., Yamada, K., Kusaka, H., “Optical image stablizing lens system,” SMPTE Journal, v 111, n 11, November, 2002, pp. 554-561.
[3]Hamano, H., “Image stabilizing optical system,” Proceedings of SPIE - The International Society for Optical Engineering, v 4487, 2001, pp. 94-102.
[4]Sato, K., Ishizuka, S., Nikami, A., Sato, M., ”Control techniques for optical image stabilizing system,” IEEE Transactions on Consumer Electronics, v 39, n 3, Aug, 1993, pp. 461-466.
[5]Li, Z., Varlow, B.R., Renforth, L.A., Auckland, D.W., Shuttleworth, R., “Optimal design of autorecloser electromagnetic actuator,” IEEE Proceedings: Electric Power Applications, v 147, n 5, Sep, 2000, pp. 431-435.
[6]Lequesne, B., ” Fast-acting, long-stroke solenoids with two springs,” IEEE Transactions on Industry Applications, v 26, n 5, Sep-Oct, 1990, pp. 848-856.
[7]Tsai, W.B., Chang, T.Y., “Analysis of flux leakage in a brushless permanent-magnet motor with embedded magnets,” IEEE Transactions on Magnetics, v 35, n 1 pt 2, Jan, 1999, pp. 543-547.
[8]Liu, P., Zhu, J., “Analysis of a linear variable reluctance permanent magnet motor,” Proceedings of the International Conference on Power Electronics and Drive Systems, v 2, 1999, pp. 734-739.
[9]Qu, R., Lipo, T. A., “Analysis and Modeling of Air-Gap and Zigzag Leakage Fluxes in a Surface-Mounted Permanent-Magnet Machine,”, IEEE Transactions on Industry Applications, v 40, n 1, January/February, 2004, pp. 121-127.
[10]Leu, M.C., Scorza, E.V., Bartel, D.L., “Characteristics and optimal design of variable airgap linear force motors,” IEEE Proceedings, Part B: Electric Power Applications, v 135, n 6, Nov, 1988, pp. 341-345.
[11]Choi, I.H., Chung, W.E.,; Kim, Y.J., Eom, I.S., Park, H.M., Kim, J.Y., “Compact disk/digital video disk (CD/DVD)-compatible optical pickup actuator for high density and high speed,” Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, v 37, n 4B, Apr, 1998, pp. 2189-2196.
[12]Sun, M.K., Dae, G.G., “The optimum design of a pick-up actuator for a minimum seek time,” Mechatronics, v 11, n 6, September, 2001, pp. 649-664.
[13]Park, K.H., Choi, C.H., Ryu, J., “Hybrid actuator for high speed and high precision optical disk drives,” Mechatronics, v 11, n 5, Aug 1, 2001, pp. 527-543.
[14]Kim, J.E., Kim, W., Kim, Y.Y., “Design of optical pickup actuator suspension plates by the topology optimization method with the additional consideration of the plate orientation,” Sensors and Actuators, A: Physical, v 121, n 2, Jun 30, 2005, pp. 527-534.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top