跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 12:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:崔博翔
研究生(外文):Po-Hsiang Tsui
論文名稱:研發超音波逆散射統計參數以應用於組織特性識別的相關考量
論文名稱(外文):Some considerations on the development of statistical parameters from ultrasonic backscatter for tissue characterization
指導教授:王士豪王士豪引用關係
指導教授(外文):Shyh-Hau Wang
學位類別:博士
校院名稱:中原大學
系所名稱:醫學工程研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:125
中文關鍵詞:Nakagami分布組織特性化血容比超音波逆散射
外文關鍵詞:NakagamiHematocritTissue characterizationUltrasonic backscattering
相關次數:
  • 被引用被引用:1
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
不同性質的散射子會對於來自生物組織的超音波逆散射包封訊號造成不同的統計分布特性。這些具有不同統計分布特性的包封訊號可透過一個能涵蓋所有超音波散射情形的Nakagami統計模型來描述其機率密度函數,其中Nakagami參數又對於區分生物組織散射子濃度的變化具有良好的能力。為了擁有Nakagami參數在定量生物組織特性時更佳的執行效能,我們探討了換能器效應、雜訊效應、以及對數壓縮效應在Nakagami參數估計時所可能造成的影響,同時也評估以Nakagami模型為基礎的參數運用在血液濃度偵測的可行性。
首先進行假體實驗與二維電腦模擬以探討換能器效應對於Nakagami參數估計的影響。使用中心頻率為5 MHz的非聚焦式與聚焦式換能器擷取散射子濃度由2至32 scatterers/mm3的假體超音波逆散射訊號。以相同的電腦模擬方法進一步探討在相同散射子濃度範圍內,雜訊與對數壓縮對於Nakagami參數估計之效應。最後以5 MHz的聚焦式換能器擷取來自血容比範圍由3%至50%的紅血球懸浮液,以此評估使用Nakagami統計模型的參數辨別血容比之可行性。
實驗結果證明,以聚焦式換能器所估計的Nakagami參數相較於使用非聚焦式換能器所估計的參數擁有更高的靈敏度以偵測散射子濃度的變化。Nakagami參數區分不同散射子濃度的靈敏度會隨著逆散射訊號訊雜比的下降而降低。此外,對數壓縮的計算會將大多數散射子濃度所相對應的包封訊號統計移至post-Rayleigh分布,使得透過壓縮的逆散射包封來估計的Nakagami參數具有更佳的靈敏度以區分不同的散射子濃度。另一方面,以未經壓縮的超音波逆散射包封所估計的Nakagami參數並無法區分不同的血容比,原因在於這些不同濃度的包封訊號統計皆為Rayleigh分布。然而,在經過對數壓縮的計算之後,所得到的Nakagami參數可有效的辨別血容比的變化。本研究結論,Nakagami參數在組織特性化中較佳的執行效能可在使用良好聚焦的換能器以及低雜訊干擾的情況下獲得。可用來提昇Nakagami參數靈敏度的對數壓縮技術,亦可幫助超音波逆散射統計參數進一步的應用於未來非侵入式血容比測量技術的發展與推廣。
Various properties of scatterers may cause different statistical distributions for the envelopes of ultrasonic backscattered signals received from biological tissues. The Nakagami statistical distribution, which has been demonstrated to be a general model capable of encompassing all conditions of ultrasonic backscattering, was proposed to describe the probability density function (PDF) of ultrasonic envelope signal. In particular, the Nakagami parameter estimated using the backscattered envelopes has a good ability to distinguish the variation of scatterer concentration in tissues. For the better performance of the Nakagami parameter in quantifying the properties of biological tissues, the effects of transducer characteristics, noise, and logarithmic compression on the estimation of the Nakagami parameter were explored. The feasibility for the application of the Nakagami-model-based parameters to the detection of blood concentration was also evaluated in this study.
The measurements of phantoms and two-dimensional computer simulations were carried out to explore the effects of transducer characteristics on the estimation of the Nakagami parameter. The Nakagami parameter as a function of scatterer concentration was calculated using backscattered signals acquired from the scattering medium of different scatterer concentrations ranged from 2 to 32 scatterers/mm3 using both 5 MHz non-focused and focused transducers. The same simulation method was further applied to produce the 5 MHz backscattered echoes in the same range of scatterer concentration to investigate the effects of noise and logarithmic compression on the Nakagami parameter estimation. The ultrasonic signals backscattered from red cell suspensions with hematocrits ranging from 3% to 50% were collected using a 5 MHz focused transducer to further verify the feasibility of the hematocrit differentiation by the parameters of the Nakagami distribution.
The results demonstrated that the Nakagami parameter estimated using a focused transducer tends to be more sensitive than that by a non-focused transducer to detect the variation of the scatterer concentration. Moreover, the sensitivity of the Nakagami parameter to differentiate different scatterer concentrations would decrease gradually corresponding to the decrease of signal-to-noise ratio (SNR) of backscattered signals. In addition, the logarithmic compression would move the statistics of the backscattered envelopes toward post-Rayleigh distributions for most scatterer concentrations, making the Nakagami parameter calculated using compressed backscattered envelopes is more sensitive than that calculated using uncompressed envelopes in differentiating variations in the scatterer concentration. On the other hand, the Nakagami parameter calculated using the uncompressed backscattered envelopes cannot be used to separate various hematocrits due to that the probability distributions of the uncompressed envelopes of different hematocrits all follow Rayleigh statistics. However, different hematocrits can be effectively distinguished using the Nakagami parameter after applying logarithmic compression to the envelope signals. This study concluded that the better performance of the Nakagami parameter in characterizing tissues could be achieved in conditions with both the use of well-focused transducer and the low noise interference. The logarithmic compression that assists in the enhancement of the Nakagami parameter sensitivity has a great potentiality in the future development of a new method to measure the hematocrit based on the Nakagami model.
TABLE OF CONTENTS

中文摘要 i
ABSTRACT iii
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xii
CHAPTER 1. INTRODUCTION 1
1.1 General 1
1.2 Ultrasonic tissue characterization using backscattering statistics 3
1.3 Research objectives 5
1.4 Dissertation organization 7
CHAPTER 2. THEORETICAL BACKGROUND 9
2.1 Fundamentals of wave propagation 9
2.2 Reflection, refraction, and attenuation 11
2.3 Scattering of objects 15
2.4 Statistical models used to describe the backscattered statistics 18
2.4.1 Rayleigh distribution model 18
2.4.2 Rician-distribution-based models 21
2.4.3 K-distribution-based models 23
2.4.4 Nakagami distribution model 25
CHAPTER 3. EFFECTS OF TRANSDUCER CHARACTERISTICS ON THE ESTIMATION OF NAKAGAMI PARAMETER 29
3.1 Introduction 29
3.2 Experiments on phantoms 29
3.2.1 Preparation of phantoms 29
3.2.2 Experimental arrangement and procedure 31
3.3 Computer simulations 33
3.3.1 Model of ultrasonic backscattered signals 33
3.3.2 Simulation procedure 34
3.4 Results 37
3.5 Discussion and conclusions 52
CHAPTER 4. EFFECTS OF WHITE NOISE ON THE ESTIMATION OF NAKAGAMI PARAMETER 55
4.1 Introduction 55
4.2 Computer simulations 56
4.3 Results 57
4.4 Discussion and conclusions 66
CHAPTER 5. EFFECTS OF LOGARITHMIC COMPRESSION ON THE ESTIMATION OF NAKAGAMI PARAMETER 69
5.1 Introduction 69
5.2 Principle of logarithmic compression 69
5.3 Computer simulations 71
5.4 Results 72
5.5 Discussion and conclusions 84
CHAPTER 6. APPLICATION OF NAKAGAMI PARAMETERS TO DIFFERENTIATION OF HEMATOCRIT 88
6.1 Introduction 88
6.2 Experiments on red cell suspensions 89
6.2.1 Preparation of suspensions 89
6.2.2 Measurement arrangement and method 90
6.3 Results 94
6.4 Discussion and conclusions 102
CHAPTER 7. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 106
7.1 Conclusions 106
7.1.1 Effects of transducer characteristics on estimation of m parameter 106
7.1.2 Effects of noise on estimation of m parameter 107
7.1.3 Effects of logarithmic compression on estimation of m parameter 107
7.1.4 Feasibility for hematocrit differentiation 108
7.2 Suggestions for future work 109
REFERENCES 111
PUBLICATION LIST 122



LIST OF FIGURES

Fig. 2.1 Reflection and refraction of the plane wave at the boundary between medium I with the acoustic impedance Z1 and medium II with the acoustic impedance Z2. 14
Fig. 2.2 Illustration for ultrasonic scattering. 16
Fig. 2.3. The Nakagami probability functions for different values of m. 28
Fig. 3.1. Photo for the particles used in the experiments. 30
Fig. 3.2. Experimental arrangement. 32
Fig. 3.3. Display of 2-D simulated incident wave. 35
Fig. 3.4. Pulse echo impulse responses (left) and spectra (right) of 5 MHz transducers. (a) and (b) non-focused transducer; (c) and (d) focused transducer. 38
Fig. 3.5. Lateral (left) and axial (right) profiles of 5 MHz transducers. (a) and (b) non-focused transducer; (c) and (d) focused transducer. 39
Fig. 3.6. Simulated pulse echo impulse responses (left) and spectra (right) of 5 MHz transducers. (a) and (b) non-focused transducer; (c) and (d) focused transducer. 41
Fig. 3.7. Simulated power density patterns of main lobes in the far-field. 42
Fig. 3.8. Typical experimental (left) and simulated (right) backscattered signals acquired from the scatterer concentration of 2 scatterers/mm3. (a) and (b) non-focused transducer; (c) and (d) focused transducer. 43
Fig. 3.9. The Nakagami parameter as a function of scatterer concentration estimated using a 5 MHz non-focused transducer. 44
Fig. 3.10. PDFs of backscattered envelopes of different scatterer concentrations measured using a 5 MHz non-focused transducer. (a) 2 scatterers/mm3; (b) 32 scatterers/mm3. 45
Fig. 3.11. The Nakagami parameter as a function of scatterer concentration estimated using a 5 MHz focused transducer. 46
Fig. 3.12. PDFs of backscattered envelopes of different scatterer concentrations measured using a 5 MHz focused transducer. (a) 2 scatterers/mm3; (b) 32 scatterers/mm3. 47
Fig. 3.13. The Nakagami parameter as a function of scatterer concentration simulated using a 5 MHz transducer. (a) non-focused transducer; (b) focused transducer. 49
Fig. 3.14. PDFs of backscattered envelopes of different scatterer concentrations simulated using a 5 MHz non-focused transducer. (a) 2 scatterers/mm3; (b) 32 scatterers/mm3. 50
Fig. 3.15. PDFs of backscattered envelopes of different scatterer concentrations simulated using a 5 MHz focused transducer. (a) 2 scatterers/mm3; (b) 32 scatterers/mm3. 51
Fig. 4.1. A typical white-noise signal (a) and its spectrum (b) in the simulations. 58
Fig. 4.2. The PDF and curve fitting using the Nakagami parameter for the white noise envelope obtained in the simulations. 59
Fig. 4.3. The simulated results without any noise interference. (a) A typical backscattered signal; (b) The Nakagami parameter as a function of scatterer concentration. 60
Fig. 4.4. The simulated results for both typical backscattered signals (left) and the Nakagami parameter as a function of scatterer concentration (right) for the following SNR values: (a) 40 dB; (b) 20 dB; (c) 10 dB; (d) 5 dB; and (e) 0 dB. 63
Fig. 4.5. The Nakagami parameter as a function of SNR for different scatterer concentrations. 64
Fig. 4.6. The sensitivity of the Nakagami parameter as a function of SNR. 65
Fig. 5.1. The PDF of the backscattered envelopes and its curve fitting by the Nakagami model. (a) 2 scatterers/mm2. (b) 32 scatterers/mm2. 73
Fig. 5.2. The m parameter as a function of scatterer concentration. 74
Fig. 5.3. The PDF of the compressed backscattered envelopes (D = 1) and its curve fitting by the Nakagami model. (a) 2 scatterers/mm2. (b) 32 scatterers/mm2. 77
Fig. 5.4. The mlog parameter as a function of scatterer concentration (D = 1). 78
Fig. 5.5. The PDF of the compressed backscattered envelopes (D = 2) and its curve fitting by the Nakagami model. (a) 2 scatterers/mm2. (b) 32 scatterers/mm2. 79
Fig. 5.6. The PDF of the compressed backscattered envelopes (D = 3) and its curve fitting by the Nakagami model. (a) 2 scatterers/mm2. (b) 32 scatterers/mm2. 80
Fig. 5.7. The mlog parameter as a function of scatterer concentration (D = 2) 81
Fig. 5.8. The mlog parameter as a function of scatterer concentration (D = 3) 82
Fig. 6.1. The experimental setup for the measurement of ultrasonic backscattering from red cell suspension. 93
Fig. 6.2. The Ω parameter as a function of hematocrits ranging from 3% to 50%. Mean and SD values are shown. 95
Fig. 6.3. The Ωlog parameter as a function of hematocrits ranging from 3% to 50%. 96
Fig. 6.4. The PDFs of uncompressed backscattered envelopes and curves fitted by the Nakagami model for different hematocrits: (a) 3%; (b) 12%; (c) 50%. 98
Fig. 6.5. The m parameter as a function of hematocrits ranging from 3% to 50%. 99
Fig. 6.6. The PDFs of compressed backscattered envelopes and curves fitted by the Nakagami model for different hematocrits: (a) 3%; (b) 12%; (c) 50%. 100
Fig. 6.7. The mlog parameter as a function of hematocrits ranging from 3% to 50%. 101


LIST OF TABLES

Table 3.1. Characteristics of the non-focused and focused transducers. 37
Table 4.1. Values of non-linear regression parameters for the Nakagami parameter in Fig. 4.5 as a function of SNR with the equation of , where r is the correlation coefficient. 66
Table 5.1. The mean and standard deviation values of the m and mlog parameter for scatterer concentrations ranging from 2 to 32 scatterers/mm2. 83
Table 6.1. Chemicals and materials for the preparation of ACD solution. 90
Adler RS. On the relationship between power mode and pressure amplitude decorrelation. Ultrasound Med. Biol. 2001;27:1291-1296.

Ahuja AT, Ying M, Evaluation of cervical lymph node vascularity: a comparison of colour Doppler, power Doppler and 3-D power Doppler sonography. Ultrasound Med. Biol. 2004;30:1557-1564.

Anderson ME, Trahey GE. A seminar on k-space applied to medical ultrasound. Duke University: Depart. of Biomedical Engineering, 2000.

András A. Electronic noise. New York: McGraw-Hill, 1982.

Atkinson P, Woodcock JP. Doppler ultrasound and its use in clinical measurement. London: Academic Press, 1982.

Burckhardt CB. Speckle in ultrasound B-mode scans. IEEE Trans. Sonics Ultrason. 1978;SU-25:1-6.

Ballew C, Haas JD. Hematologic evidence of fetal hypoxia among newborn infants at high altitude in Bolivia. Am. J. Obstet. Gynecol. 1986;155:166-169.

Bamber JC, Hill CR. Acoustic properties of normal and cancerous human liver-Ⅰ dependence on pathological condition. Ultrasound Med. Biol. 1981;7:121-133.

Bamber JC, Hill CR, King JA. Acoustic properties of normal and cancerous human liver-Ⅱ dependence on tissue structure. Ultrasound Med. Biol. 1981;7:135-144.

Berson M, Roncin A, Pourcelot L. Compound scanning with an electrically steered beam. Ultrason. Imag. 1981;3:303-308.

Bevan PD, Sherar MD. B-scan ultrasound imaging of thermal coagulation in bovine liver: Log envelope slope attenuation mapping. Ultrasound Med. Biol. 2001;27:379-387.

Bevan PD, Sherar MD. B-scan ultrasound imaging of thermal coagulation in bovine liver: Frequency shift attenuation mapping. Ultrasound Med. Biol. 2001;27:809-817.

Carpenter DA, Dadd MJ, Kossoff G. A multimode real time scanner. Ultrasound Med. Biol. 1980;6:279-284.

Chan-Yeung M, Ferreira P, Frohlich J, Schulzer M, Tan F. The effects of age, smoking, and alcohol on routine laboratory tests. Am. J. Clin. Pathol. 1981;75:320-326.

Christensen DA. Ultrasonic bioinstrumentation. New York: Wiley, c1988.

Carr JJ, Brown JM. Introduction to biomedical equipment technology. New York: Prentice-Hall, 1998.

Chen JF, Zagzebski JA, Madsen EL. Non-Gaussian versus non-Rayleigh statistical properties of ultrasound echo signals. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 1994;41:435-440.

Chen J, Shi Y, Shi S. Noise analysis of digital ultrasonic system and elimination of pulse noise. Ini. J. Pres. Ves. Pip. 1998;75:887-890.

Cheng J, Beaulieu N. Moment-based estimation of the Nakagami-m fading parameter. IEEE PACRIM Conf. On Comm. Comp. and Signal Proc. 2001;2:361-364.

Del Grosso VA, Mader CW. Speed of sound in pure water. J. Acoust. Soc. Am. 1972;52:1442-1446.

Deng CX, Lizzi FL, Silverman RH, Ursea R, Coleman DJ. Imaging and spectrum analysis of contrast agents in the in vivo rabbit eye using very high frequency ultrasound. Ultrasound Med. Biol. 1998;24:383-394.

Dumane VA, Shankar PM. Use of frequency diversity and Nakagami statistics in ultrasonic tissue characterization. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 2001;48:1139-1146.

Dumane VA. Diversity and compounding for enhanced discrimination of breast masses in ultrasonic B-scan images. Ph. D. Thesis. Drexel University: Dept. of Electrical and Computer Engineering, 2002.

Dutt V, Greenleaf JF. Ultrasound echo envelope analysis using a homodyned K distribution signal model. Ultrason. Imag. 1994;16:265-287.

Dutt V, Greenleaf JF. Statistics of the log-compressed echo envelope. J. Acoust. Soc. Am. 1996;99:3817-3825.

Enderle J, Blanchard S, Bronzino J. Introduction to biomedical engineering. San Diego: Academic Press, 2000.

Fenster A, Downey DB. 3-D ultrasound imaging: a review. IEEE Eng. Med. Biol. 1996;15:41-51.

Fields S, Dunn F. Correlation of echographic visualizability of tissue with biological composition and physiological state. J. Acoust. Soc. Am. 1973;54:809-811.

Fontaine I, Bertrand M, Cloutier G. A system-based approach to modeling the ultrasound signal backscattered by red blood cells. Biophysical Journal 1999;77:2387-2399.

Fontaine I, Savery D, Cloutier G. Simulation of ultrasound backscattering by red cell aggregates: effect of shear rate and anisotropy. Biophysical Journal 2002;82:1696-1710.

Foster FS, Pavlin CJ, Harasiewicz KA, Christopher DA, Turnbull DH. Advances in ultrasound biomicroscopy. Ultrasound Med. Biol. 2000;26:1-27.

Gagnon DR, Zhang TJ, Brand FN, Kannel WB. Hematocrit and the risk of cardiovascular disease - the Framingham study: a 34-year follow-up. Am. Heart J. 1994;127:674-682.

Gonzalez RC. Digital image processin. Mass.: Addison-Wesley, c1992.

Gore JC, Leeman S. Ultrasonic backscattering from human tissue: a realistic model. Phys. Med. Biol. 1977;22:317-326.

Greenleaf JF. Tissue characterization with ultrasound. Boca Raton, Fla.: CRC Press, c1986.

Haar GT. Review therapeutic ultrasound. Euro. J. Ultrason. 1999;9:3-9.

Haïat G, Padilla F, Barkmann R, Kolta S, Latremouille C, Glüer CC, Laugier P. In vitro speed of sound measurement in intact human femur specimens. Ultrasound Med. Biol. 2005;31:987-996.

He P. Acoustic attenuation estimation for soft tissue from ultrasound echo envelope peaks. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 1989;36:197-203.

Insana MF, Wagner RF, Garra BS, Brown DG, Shawker TH. Analysis of ultrasound image texture via generalized Rician statistics. Opt. Eng. 1986;25:743-748.

Jakeman E. On the statistics of K-distribution. J. Phys. 1980;13:31-48.

Jakeman E. Speckle statistics with a small number of scatterers. Opt. Eng. 1984;23:453-461.

Jakeman E, Tough RJA. Generalized K distribution: A statistical model for weak scattering. J. Opt. Soc. Am. 1987;4:1764-1722.

Jensen JA. Estimation of blood velocities using ultrasound. Cambridge. New York: Cambridge University Press, 1996.

Johner C, Chamney P, Schneditz D, Krämer M. Evaluation of an ultrasonic blood volume monitor. Nephrol. Dial. Transplant. 1998;13:2098-2103.

Joynt LF. A stochastic approach to ultrasonic tissue characterization. Stanford University Technical Report: G557-4, 1979.

Kaplan D, Ma Q. On the statistical characteristics of log-compressed Rayleigh signals: Theoretical formulation and experimental results. J. Acoust. Soc. Am. 1994;95:1396-1400.

Kremkau FW. Diagnostic ultrasound. Philadelphia: Saunders, 1998.

Lebertre M, Ossant F, Vaillant L, Diridollou S, Patat F. Spatial variation of acoustic parameters in human skin: an in vitro study between 22 and 45 MHz. Ultrasound Med. Biol. 2002;28:599-615.

Li Y, Zagzebski JA. Computer model for harmonic ultrasound imaging. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 2000;47:1259-1272.

Lizzi FL, Feleppa EJ, Astor M, Kalisz M. Statistics of ultrasonic spectral parameters for prostate and liver examinations. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 1997;44:935-942.

Magnin PA, von Ramm OT, Thurstone FL. Frequency compounding for speckle contrast reduction in phased array images. Ultrason. Imag. 1982;4:267-281.

Maruvada S, Shung KK, Wang SH. High-frequency backscatter and attenuation measurements of porcine erythrocyte suspensions between 30-90 MHz. Ultrasound Med. Biol. 2002;28:1081-1088.

Meire HB, Farrant P. Basic ultrasound. New York: Wiley, 1995.

Melton HE, Magnin PA. A-mode speckle reduction with compound frequencies and compound bandwidths. Ultrason. Imag. 1984;6:159-173.

Molthen RC, Shankar PM, Reid JM. Characterization of ultrasonic B-scans using non-Rayleigh statistics. Ultrasound Med. Biol. 1995;21:161-170.

Moran CM, Bush NL, Bamber JC. Ultrasonic propagation properties of excised human skin. Ultrasound Med. Biol. 1995;21:1177-1190.

Morris JC. Analogue electronics. London: E. Arnold, 1991.

Narayanan VM, Shankar PM. Non-Rayleigh statistics of ultrasonic backscattered signals. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 1994;41:845-852.

Nicholas D, Nassiri DK, Garbutt P, Hill CR. Tissue characterization from ultrasound B-scan data. Ultrasound Med. Biol. 1986;12:135-143.

Njeh CF, Saeed I, Grigorian M, Kendler DL, Fan B, Shepherd J, Mcclung M, Drake WM, Genant HK. Assessment of bone status using speed of sound at multiple anatomical sites. Ultrasound Med. Biol. 2001;27:1337-1345.

Oosterveld BJ, Thijssen JM, Verhoef WA. Texture of B-mode echograms: 3-D simulations and experiments of the effects of diffraction and scatter density. Ultrason. Imag. 1985;7:142-160.

Ossant F, Lebertre M, Pourcelot L, Patat F. Ultrasonic characterization of maturation of fetal lung microstructure: an animal study. Ultrasound Med. Biol. 2001;27:157-169.

Papoulis A. Probability, random variables and stochastic processes. New York: McGraw-Hill, c1991.

Pines A, Itzhak Y, Bassat IB, Hertz M. Ultrasonography in the staging of Hodgkin’s disease: Lymphographic correlation. Europ. J. Cancer Clin. Oncol. 1986;22:29-31.

Raju BI, Srinivasan MA. High-frequency ultrasonic attenuation and backscatter coefficients of in vivo normal human dermis and subcutaneous fat. Ultrasound Med. Biol. 2001;27:1543-1556.

Raju BI, Srinivasan MA. Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 2002;49:871-882.

Raju BI, Swindells KJ, Gonzalez S, Srinivasan MA. Quantitative ultrasonic methods for characterization of skin lesions in vivo. Ultrasound Med. Biol. 2003;29:825-838.

Secomski W, Nowicki A, Guidi F, Tortoli P, Lewin PA. Noninvasive in vivo measurements of hematocrit. J. Ultrasound Med. 2003;22:375-384.

Shung KK, Sigelmann RA, Reid JM. Scattering of ultrasound by blood. IEEE Trans. Biomed. Eng. 1976;BME-23:460-467.

Shung KK. On the ultrasound scattering from blood as a function of hematocrit. IEEE Trans. Sonics Ultrasonics. 1982;SU-29:327-331.

Shung KK, Smith MB, Tsui B. Principles of medical imaging. San Diego: Academic Press, 1992.

Shung KK, Thieme GA. Ultrasonic scattering in biological tissues. Boca Raton: CRC Press, c1993.

Shankar PM, Reid JM, Ortega H, Piccoli CW, Goldberg BB. Use of non-Rayleigh statistics for the identification of tumors in ultrasonic B-scans of the breast. IEEE Trans. Med. Imaging. 1993;12:687-692.

Shankar PM. A model for ultrasonic scattering from tissues based on K-distribution. Phys. Med. Biol. 1995;40:1633-1649.

Shankar PM. A general statistical model for ultrasonic backscattering from tissues. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 2000;47:727-736.

Shankar PM, Dumane VA, Reid JM, Genis V, Forsberg F, Piccoli CW, Goldberg BB. Classification of ultrasonic B-mode images of breast masses using Nakagami distribution. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 2001;48:569-580.

Shankar PM, Dumane VA, Piccoli CW, Reid JM, Forsberg F, Goldberg BB. Classification of breast masses in ultrasonic B-mode images using a compounding technique in the Nakagami distribution domain. Ultrasound Med. Biol. 2002;28:1295-1300.

Sleefe GE, Lele PP. Tissue characterization based on scatterer number density estimation. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 1988;35:749-757.

Smith SW, Lopez H, Bodine WJ. Frequency independent ultrasound contrast detail phantoms. Ultrasound Med. Biol. 1985;11:467-477.

Sommer FG, Joynt LF, Carroll BA, Macovski A. Ultrasonic characterization of abdominal tissues via digital analysis of backscattered waveforms. Radiology 1981;141:811-817.

Songhvi NT, Hynynen K, Lizzi FL. New developments in therapeutic ultrasound. IEEE Eng. Med. Biol. 1996;15:83-92.

Steuer RR, Leypoldt JK, Cheung AK, Harris DH, Conis JM. Hematocrit as an indicator of blood volume and a predictor of intradialytic morbid events. ASAIO J. 1994;40:M691-696.

Szabo TL. Diagnostic ultrasound imaging. Burlington, MA: Elsevier Academic Press, c2004.

Töyräs J, Laasanen MS, Saarakkala S, Lammi MJ, Rieppo J, Kurkijärvi J, Lappalainen R, Jurvelin JS. Speed of sound in normal degenerated bovine articular cartilage. Ultrasound Med. Biol. 2003;29:447-454.

Trahey GE, Allison JW, Smith SW, von Ramm OT. A quantitative approach to speckle reduction via frequency compounding. Ultrason. Imag. 1986;8:151-164.

Tranquart F, Grenier N, Eder V, Pourcelot L. Clinical use of ultrasound tissue harmonic imaging. Ultrasound Med. Biol. 1999;25:889-894.

Tsui PH, Wang SH. The effect of the transducer characteristics on the estimation of Nakagami parameter as a function of scatterer concentration. Ultrasound Med. Biol. 2004;30:1345-1353.

Tsui PH, Wang SH, Huang CC. The effect of logarithmic compression on estimation of Nakagami parameter for ultrasonic tissue characterization. Phys. in Med. and Biol. 2005;50:3235-3244.

Turnbull DH, Starkoski BG, Harasiewicz KA, Semple JL, From L, Gupta AK, Sauder DN, Foster FS. A 40-100 MHz B-scan ultrasound backscatter microscope for skin imaging. Ultrasound Med. Biol. 1995;21:79-88.

Tuthill TA, Sperry RH, Parker KJ. Deviations from Rayleigh statistics in ultrasonic speckle. Ultrason. Imag. 1988;10:81-89.

Vander AJ, Sherman JH, Luciano DS. Human physiology: the mechanisms of body function. McGraw-Hill, Boston, MA c1998.

Waag RC. A review of tissue characterization from ultrasonic scattering. IEEE Trans. Biomed. Eng. 1984;31:884-893.

Wagner RF, Smith SW, Sandrik JM, Lopez H. Statistics of speckle in ultrasound B-scans. IEEE Trans. Sonics Ultrason. 1983;30:156-163.

Wagner RF, Insana MF, Brown DG. Unified approach to the detection and classification of speckle texture in diagnostic ultrasound. Opt. Eng. 1986;25:738-742.

Wagner RF, Insana MF, Brown DG. Statistical properties of radio-frequency and envelope detected signals with applications to medical ultrasound. J. Opt. Soc. Am. 1987;4:910-922.

Walach E, Shmulewitz A, Itzchak Y, Hetman Z. Local tissue attenuation images based on pulsed-echo ultrasound scans. IEEE Trans. Biomed. Eng. 1989;36:211-221.

Wear KA, Wagner RF. A comparison of autoregressive spectral estimation algorithms and order determination methods in ultrasonic tissue characterization. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 1995;42:709-716.

Webster JG. Medical instrumentation: appplication and design. New York: Wiley, 1998.

Wells PNT. Ultrasonic imaging of the human body. Rep. Prog. Phys. 1999;62:671-722.

Weng L, Reid JM, Shankar PM, Soetanto K. Ultrasound speckle analysis based on the K distribution. J. Acoust. Soc. Am. 1991;89:2992-2995.

Wang SH, Shung KK. An approach for measuring ultrasonic backscattering from biological tissues with focused transducers. IEEE Trans. Biomed. Eng. 1997;44:549-554.

Wang SH, Shung KK. In vivo measurements of ultrasonic backscattering in blood. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 2001;48:425-431.

Wang SH, Tsai FC. Characterization of bony tissues from ultrasonic backscattering using statistical models. IEEE Ultrasonic Symposium Proceedings 2001;2:1205-1208.

Yuan YW, Shung KK. The effect of focusing on ultrasonic backscatter measurements. Ultrason. Imag. 1986;8:121-130.

Yuan YW, Shung KK. Ultrasonic backscatter from flowing whold blood Ⅰ: Dependence on shear rate and hematocrit. J. Acoust. Soc. Am. 1988;84:52-58.

Zagzebski JA, Chen JF, Dong F, Wilson T. Intervening attenuation affects first-order statistical properties of ultrasound echo signals. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 1999;46:35-40.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top