跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 03:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王秋雲
研究生(外文):Chiu-Yun Wang
論文名稱:陳皮素對內皮細胞引發發炎反應之保護角色的探討
論文名稱(外文):Evaluation of the Protective Effects of Hesperetin on Endothelial Cells under Inflammatory Stimulation
指導教授:何豐名何豐名引用關係翁清松翁清松引用關係
指導教授(外文):Feng-Ming HoChing-Sung Weng
學位類別:碩士
校院名稱:中原大學
系所名稱:醫學工程研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:72
中文關鍵詞:陳皮素細胞間附著因子-1動脈粥狀硬化血基質氧化脢-1介白質-8
外文關鍵詞:AtherogenesisIntercellular Adhesion Molecule-1HesperetinInterleukin-8(IL-8)Heme Oxygenase-1(HO-1)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:407
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
血管內皮細胞的功能在於調節血管功能並維持其恆定性,所以內皮細胞的功能異常被認為是血管病變的開始。當內皮細胞受傷時,大量分泌出的附著因子會增加單核球(Monocytes)對內皮細胞吸附的能力,進而移行(Migration)到內皮細胞內行使發炎反應,而心血管疾病中的動脈粥狀硬化,即是一種與血管功能異常相關的慢性發炎反應疾病。在許多形式的壓力下,有些細胞會誘導HO-1的表現去行使細胞層級的防衛機制,有效的調控HO-1的分泌可以應用在治療因發炎反應所引起的疾病。陳皮素(Hesperetin)是屬於生物類黃酮-柑橘黃酮中的一種,廣泛存在於芸香科植物和中草藥植物中,而生物類黃酮一族一直是廣泛用來做研究、保健、預防疾病生成的一群天然物。
因此在本研究中,利用TNF-α當作原發炎性刺激物,刺激人類臍帶內皮細胞(HUVECs)作為發炎反應的模式,並添加Hesperetin不同濃度(3μM、10μM、30μM與50μM)觀察此天然中草藥物Hesperetin是否可以保護細胞並降低受刺激後的發炎現象,如觀察內皮細胞的細胞存活率(MTT assay)、分泌IL-8分子和ICAM-1分子的表現量及THP-1附著在內皮細胞上之能力,以及啟動細胞自我防衛層級HO-1分泌的效力。
由實驗結果得知,在Hesperetin濃度為3μM、10μM、30μM下有保護細胞的生長,且在30μM下具有上升細胞受TNF-α(50ng/ml)傷害的細胞存活率。並且3μM、10μM與30μM濃度下皆可抑制TNF-α(50ng/ml)刺激細胞引起之IL-8分子的表現量。在此相同濃度下(3μM、10μM、30μM),亦能抑制由TNF-α(50ng/ml)所引起的ICAM-1的分泌,並且有濃度的相依性。在THP-1附著的實驗裡,Hesperetin(3μM、10μM、30μM)皆能抑制單核球(THP-1)吸附在內皮細胞上,推論可降低血管發炎初期的反應。且能啟動內皮細胞內皮性HO-1的分泌,增加細胞自我防衛層級的表現,可去調控因發炎反應所引起的疾病。
所以,中草藥物-陳皮素(Hesperetin)能有效的抑制單核球附著到內皮細胞上,且可以啟動細胞的自我防禦機制,具有良好抗發炎性的作用,有可能成為新型開發應用於預防動脈粥狀硬化形成的新中草藥物。
Attachment of leukocytes to the vascular endothelium and then migration into the vessel wall are the early events in atherogenesis. HO-1 is a critical protein in the response to oxidative injury. Its main function is associated with the degradation of heme to biliverdin, iron and carbon monoxide. HO-1, which functions as part of a cytoprotective mechanism, is based upon a series of antioxidant activities. Hesperetin belongs to the class of flavonoids called flavanones, which are abundant in citrus fruits. It has been long known that flavonoids possess bioactive potential for their bioavailability, metabolic fate, and health effects. Flavonoids are potent antioxidants in vitro, and therefore one of the main interests in the compounds has involved protection against cardiovascular disease.
In this study, we used the pro-inflammatory cytokine, TNF-α (10ng/ml, 50ng/ml), to induce the inflammatory reactions in human umbilical vein endothelial cells (HUVECs). Different concentrations of Hesperetin (3μM, 10μM, 30μM and 50μM), the extract of Chenpi, were added into HUVECs for 24 hours to study the cells’ proliferation, the expressions of ICAM-1 and IL-8, the ability of THP-1 adhesion on endothelial cells, and the protein expressions of HO-1.
The results indicated that three concentrations of Hesperetin (3μM, 10μM, 30μM) could increase cell proliferations. The Hesperetin could also show the protective affection on the cells under the stimulation of TNF-α. In the different doses of 3μM, 10μM and 30μM, Hesperetin suppressed the cytokine-induced expressions of IL-8. Hesperetin has shown the ability to reduce the cytokine-induced expressions of ICAM-1, the ability of THP-1 adhesion on endothelial cells, and also the ability to induce the protein expressions of HO-1.
Finally, our results suggest that the extract of Chenpi, Hesperetin, has the possibility to be an anti-inflammatory product.
目錄
摘要 Ⅰ
Abstract Ⅲ
誌謝 Ⅴ
目錄 Ⅵ
圖目錄 Ⅷ
表目錄 Ⅸ
第一章 緒論 1
1-1 前言 1
1-2陳皮素(Hesperetin) 2
1-3 內皮細胞 5
1-4 發炎因子-腫瘤壞死因子-α(TNF-α)與介白質-8(IL-8) 9
1-4-1 腫瘤壞死因子-α(TNF-α)與動脈粥狀硬化之關係 10
1-4-2 介白質-8(IL-8)與動脈粥狀硬化之關係 12
1-5 附著因子 13
1-5-1 細胞間附著因子-1(ICAM-1)與動脈粥狀硬化之關係 16
1-6 血基質氧化脢(Heme Oxygenase; HO) 19
1-6-1 血基質氧化脢-1(HO-1)與動脈粥狀硬化之關係 19
1-7 研究目的 22
第二章 實驗材料與方法 23
2-1 實驗材料 23
2-1-1 藥品與試劑 23
2-2 實驗方法 25
2-2-1 細胞培養 26
2-2-1-1 人類臍帶靜脈內皮細胞(HUVECs)之分離 26
2-2-1-2 單核球THP-1 cells之培養 27
2-2-1-3 細胞繼代培養 28
2-2-1-4 細胞計數(Cells Counting) 28
2-2-2 細胞存活率分析:MTT ASSAY 29
2-2-3 酵素鏈結免疫吸附法(Enzyme-Linked Immunosorbent Assay; ELISA) 31
2-2-4 細胞間附著因子-1(Intercellular Adhesion Molecular-1;ICAM-1) 33
2-2-5 白血球黏著之測定:THP-1 Adhesion 34
2-2-6 西方墨點法(Western Blot) 36
2-2-7 統計分析 37
第三章 結果與討論 38
3-1 內皮細胞(HUVECs)存活率分析:MTT Assay 38
3-2 內皮細胞(HUVECs)IL-8分子的表現量 42
3-3 內皮細胞(HUVECs)ICAM-1分子的表現量 45
3-4 單核球細胞(THP-1)附著到內皮細胞(HUVECs)之表現量 48
3-5 內皮細胞(HUVECs)之HO-1蛋白質表現量 50
第四章 結論與展望 53
4-1 結論 53
4-2 展望 55
參考文獻 56

圖目錄
圖1-1 Hesperetin之結構式 3
圖1-2 白血球附著並移行到內皮細胞下之過程 6
圖1-3 TNF-α引起多種細胞之發炎反應 11
圖1-4 細胞間的交互作用型態-同型(Homotypic)、異型(Heterotypic)、細胞與細胞外基質(Cell- Extracellular Matrix) 13
圖1-5 形成動脈粥狀硬化早期原因-單核球附著在內皮細胞上 14
圖1-6 細胞膜上附著因子的種類 16
圖1-7 血基質氧化脢(HO)的代謝反應 19
圖2-1 實驗流程圖 25
圖2-2 活細胞代謝MTT產生Formazan之反應圖 30
圖3-1 Hesperetin對待HUVECs後之細胞存活率 39
圖3-2 TNF-α對待HUVECs後之細胞存活率 41
圖3-3 Hesperetin與TNF-α對待HUVECs後之細胞存活率 41
圖3-4 Hesperetin對待HUVECs後之介白質-8(IL-8)之分泌量 43
圖3-5 Hesperetin與TNF-α對待HUVECs後之介白質-8(IL-8)之分泌量 44
圖3-6 Hesperetin對待HUVECs後之細胞間附著分子-1(ICAM-1)之分泌量 46
圖3-7 Hesperetin與TNF-α對待HUVECs後之細胞間附著分子-1(ICAM-1)之分泌量 47
圖3-8 Hesperetin與TNF-α對待HUVECs後分析其THP-1附著於HUVECs上之能力 49
圖3-9 Hesperetin與TNF-α對待HUVECs後之HO-1蛋白質分泌量 52

表目錄
表1-1 含有Hesperetin之中草藥植物 3
表1-2 附著分子與疾病之關係 14
表1-3 表現ICAM-1之受刺激因子刺激的細胞 17
表1-4 表現ICAM-1之動脈粥狀硬化之機能損害 17
表1-5 動物與細胞培養模式下有關HO-1與動脈粥狀硬化之相關 21
參考文獻

[1] T. Tanaka, H. Makita, K. Kawabata, H. Mori, M. Kakumoto, K. Satoh, A. Hara, T. Sumida, T. Tanaka and H. Ogawa, Chemoprevention of azoxymethane-induced rat colon carcinogenesis by the naturally occurring flavonoids, diosmin and hesperidin, Carcinogenesis, vol. 18, pp. 957-965, 1997.
[2] G. S. Choi, S. Lee, T. S. Jeong, M. K. Lee, J. S. Lee, U. J. Jung, H. J. Kim, Y. B. Park, S. H. Bok and M. S. Choi, Evaluation of hesperetin 7-O-lauryl ether as lipid-lowering agent in high-cholesterol-fed rats, Bioorganic and Medicinal Chemistry, vol. 12, pp. 3599-3605, 2004.
[3] E. Iris, Review of the flavonoids quercetin, hesperetin, and naringenin. dietary sources, bioactivities, bioavailability, and epidemiology, Nutrition Research, vol. 24, pp. 851-874, 2004.
[4] A. Garg, S. Garg, L. J. D. Zaneveld and A. K. Singla, Chemistry and pharmacology of the citrus bioflavonoid hesperidin, Phytotherapy research, vol. 15, pp. 655-669, 2001.
[5] Y. C. Chen, S. C. Shen and H. Y. Lin, Rutinoside at C7 attenuates the apoptosis-inducing activity of flavonoids, Biochemical Pharmacology, vol. 66, pp. 1139-1150, 2003.
[6] C. W. Stewart, M. K. Elzbieta, A. M. John and D. Alan, Nobiletin, a citrus flavonoid isolated from tangerines, selectively inhibits class a scavenger receptor-mediated metabolism of acetylated LDL by mouse macrophages, Atherosclerosis, vol. 178, pp. 25-32, 2005.
[7] Y. J. Jeong, Y. J. Choi, H. M. Kwon, S. W. Kang, H. S. Park, M. Lee and Y. H. Kang, Differential inhibition of oxidized LDL-induced apoptosis in human endothelial cells treated with different flavonoids, British Journal of Nutrition, vol. 93, pp. 581-591, 2005.
[8] A. Faggiotto, R. Ross and L. Harker, Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation, Arteriosclerosis, vol. 4, pp. 323-340, 1984.
[9] R. Ross, Atherosclerosis – an inflammatory disease, N. Engl. J. Med., vol. 340, pp. 115-126, 1999.
[10] D. T. Price and J. Loscalzo, Cellular adhesion molecules and atherogenesis, American Journal of Medicine, vol. 107, pp. 85-97, 1999.
[11] R. Ross, A. Faggiotto, P. D. Bowen and E. Raines, The role of endothelial injury and platelet and macrophage interactions in atherosclerosis, Circulation, vol. 70, pp. 77-82, 1984.
[12] Y. Huo, K. Ley, Adhesion molecules and atherogenesis, Acta Physiol Scand, vol. 173, pp. 35-43, 2001.
[13] L. Antje, L. Mario, G. Nicole, S. Frederike, M. Silke, B. Cornelia, S. Karl, B. Gert and S. Verena, The tea flavonoid epigallocatechin-3-gallate reduces cytokine-induced VCAM-1 expression and monocyte adhesion to endothelial cells, Biochemical and Biophysical Research Communications, vol. 316, pp. 659-665, 2004.
[14] Z. Ruozhi, C. Xilin, Y. Qizhi and C. Changyi, TNF-α induces interleukin-8 and endothelin-1 expression in human endothelial cells with different redox pathways, Biochemical and Biophysical Research Communications, vol. 327, pp. 985-992, 2005.
[15] 陳永祥,探討抗氧化中藥對細胞黏附分子表現及其機轉之影響,國立陽明大學傳統醫藥學研究所,博士論文,民國90年。
[16] J. W. Chen, Y. H. Chen, F. Y. Lin, Y. L. Chen and S. J. Lin, Ginkgo biloba extract inhibits tumor necrosis factor-induced reactive oxygen species generation, transcription factor activation, and cell adhesion molecule expression in human aortic endothelial cells, Arterioscler Thromb Vasc Biol., vol. 23, pp. 1559-1566, 2003.
[17] M. Ding, G. R. Zhao, Y. J. Yuan and Z. X. Guo, Aqueous extract of salvia miltiorrhoza regulates adhesion molecule expression of tumor necrosis factor α–induced endothelial cells by blocking activation of nuclear factor κB, J. Cardiovasc Pharmacol, vol. 45, pp. 516-524, 2005.
[18] F. X. Michael, E. M. T. Gnant and A. H. J. Richard, Effects of hyperthermia and tumour necrosis factor on inflammatory cytokine secretion and procoagulant activity in endothelial cells, Cytokine, vol. 12, pp. 339-347, 2000.
[19] K. W. Samantha and P. Mauro, Dexamethasone inhibits cytokine-induced intercellular adhesion molecule-1 up-regulation on endothelial cell lines, European Journal of Pharmacology, vol. 331, pp. 65-71, 1997.
[20] T. J. Schall, M. Lewis, K. J. Koller, A. Lee, G. C. Rice, G. H. Wong, T. Gatanaga, G. A. Granger, R. Lentz and H. Raab, Molecular cloning and expression of a receptor for human tumor necrosis factor, Cell, vol. 61, pp. 361-370, 1990.
[21] C. A. Smith, T. Davis, D. Anderson, L. Solam, M. P. Beckmann, R. Jerzy, S. K. Dower, D. Cosman and R. G. Goodwin, A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins, Science, vol. 248, pp. 1019-1023, 1990.
[22] H. Loetscher, Y. C. Pan, H. W. Lahm, R. Gentz, M. Brockhaus, H. Tabuchi and W. Lesslauer, Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor, Cell, vol. 61, pp. 351-359, 1990.
[23] 許惠茹,巨噬細胞與非小型細胞肺腺癌細胞交互作用後之基因剖繪,國立中興大學生物醫學研究所,碩士論文,民國92年。
[24] N. Wang, I. Tabas, R. Winchester, S. Ravalli, L. E. Rabbani and A. Tall, Interleukin 8 is induced by cholesterol loading of macrophages and expressed by macrophage foam cells in human atheroma, J. Biol. Chem., vol. 271, pp. 8837-8842, 1996.
[25] 黃盈婷,人類血管內皮細胞的細胞刺激對白血球黏著及氧活性物質產生之研究,國立成功大學微生物暨免疫學研究所,碩士論文,民國91年。
[26] S. Fichtlscherer, L. Rossig, S. Breuer, M. Vasa, S. Dimmeler and A. M. Zeiher, Tumor necrosis factor antagonism with etanercept improves systemic endothelial vasoreactivity in patients with advanced heart failure, Circulation, vol. 104, pp. 3023-3025, 2001.
[27] L. Branen, L. Hovgaard, M. Nitulescu, E. Bengtsson, J. Nilsson and S. Jovinge, Inhibition of tumor necrosis factor-α reduces atherosclerosis in apolipoprotein E knockout Mice, Arterioscler. Thromb. Vasc. Biol., vol. 24, pp. 2137-2142, 2004.
[28] E. Andreas, S. Bhanu, H. Gunther and E. Stefan, Taming TNF: strategies to restrain this proinflammatory cytokine, Immunology Today, vol. 18, pp. 487-492, 1997.
[29] J. R. Theresa and H. E. G. Pieter, Chemokines and atherosclerosis, Atherosclerosis, vol. 147, pp. 213-225, 1999.
[30] H. G. Rus, R. Vlaicu and F. Niculescu, Interleukin-6 and interleukin-8 protein and gene expression in human arterial atherosclerotic wall, Atherosclerosis, vol. 127, pp. 263-271, 1996.
[31] A. B. Willian, Modulation of atherogenesis by chemokines, Trends Cardiovasc Med., vol. 14, pp. 161-165, 2004.
[32] N. Sekido, N. Mukaida, A. Harada, I. Nakanishi, Y. Watanabe and K. Matsushima, Prevention of lung reperfusion injury in rabbits by a monoclonal antibody against interleukin-8, Nature, vol. 365, pp. 654-657, 1993.
[33] S. J. Smart and T. B. Casale, TNF-α induced transendothelial neutrophil migration is IL-8 dependent, Am. J. Physiol., vol. 266, pp. 238-245, 1994.
[34] R. E. Gerszten, Z. E. A. Garcia, Y. C. Lim, M. Yoshida, H. A. Ding, M. A. J. Gimbrone, A. D. Luster, F. W. Luscinskas and A. Rosenzweig, MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions, Nature, vol. 398, pp. 718-723, 1999.
[35] P. Lilli and T. Mimi, Structure and function of cell adhesion molecules, The American Journal of Medicine, vol. 106, pp. 467-476, 1999.
[36] G. S. Kansas, Selectins and their ligand: current concepts and controversies, Blood, vol. 88, pp. 3259-3287, 1996.
[37] C. Robert and T. S. Kupper, Inflammatory Skin Diseases, T Cells, and Immune Surveillance, N. Engl. J. Med., vol. 341, pp. 1817-1828, 1999.
[38] E. Wolfgang, C. W. Peter, W. Christian, Monocytic cell adhesion toendothelial cells stimulated by oxidized low density lipoprotein is mediated by distinct endothelial ligands, Atherosclerosis, vol. 136, pp. 297-303, 1998.
[39] Z. Fan, Y. Wei, L. H. James, G. Phillip, G. D. Roger, W. T. Ethan and K. H. Diane, Inhibition of TNF-α induced ICAM-1, VCAM-1 and E-selectin expression by selenium, Atherosclerosis, vol. 161, pp. 381-386, 2002.
[40] M. F. Nageh, E. T. Sandberg and K. R. Marotti, Deficiency of inflammatory cell adhesion molecules protects against atherosclerosis in mice, Arteriosclerosis Tbrombosis Vascular Biol., vol. 17, pp. 1517-1520, 1997.
[41] R. G. Collins, R. Velji, N. Y. Guevara, M. J. Hicks, L. Chan and A. L. Beaudet, P-selectin or ICAM-1 deficiency substantially protects against atherosclerosis in apoE deficient mice, J. Exp. Med., vol. 191, pp. 189-194, 2000.
[42] S. S. Patel, R. Thiagarajan, J. T. Willerson and E. T. H. Yeh, Inhibition of α4 integrin and ICAM-1 markedly attenuate macrophage homing to atherosclerotic plaques in apoE-deficient mice, Circulation, vol. 97, pp. 75-81, 1998.
[43] M. D. Maines, Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications, FASEB J., vol. 2, pp. 2557-2568, 1988.
[44] M. D. Maines, G. M. Trakshel and R. K. Kutty, Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible, J. Boil. Chem., vol. 261, pp. 411-419, 1986.
[45] W. K. J. McCoubrey, T. J. Huang and M. D. Maines, Isolation and characterization of a cDNA from the rat brain that encondes hemoprotein heme oxygenase-3, Eur. J. Biochem., vol. 247, pp. 725-732, 1997.
[46] S. Immenschuh and H. Schröder, Heme oxygenase-1 and cardiovascular disease, Histology and Histopathology, vol. 21, pp. 679-685, 2006.
[47] L. E. Otterbein, F. H. Bach, J. Alam, M. P. Soares, H. T. Lu, M. Wysk, R. J. Davis, R. A. Flavell and A. M. Choi, Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway, Nat. Med., vol. 6, pp. 422-426, 2000.
[48] T. Fujita, K. Toda1, A, Karimova, S. F. Yan, Y. Naka, S. Yet and D. J. Pinsky, Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis, Nat. Med., vol. 7, pp. 598-604, 2001.
[49] S. Brouard, L. E. Otterbein, J. Anrather, E. Tobiasch, F. H. Bach, A. M. K. Choi and M. Soares, Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis, J. Exp. Med., vol. 192, pp. 1015-1020, 2000.
[50] J. Balla, H. S. Jacob, G. Balla, K. Nath, J. W. Eaton and G. M. Vercellotti, Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage, Proc. Natl. Acad. Sci. USA, vol. 90, pp. 9285-9289, 1993.
[51] V. Jeney, J. Balla, A. Yachie, Z. Varga, G. M. Vercellotti, J. W. Eaton and G. Balla, Pro-oxidant and cytotoxic effects of circulating heme, Blood, vol. 100, pp. 879-887, 2000.
[52] S. Hayashi, R. Takamiya, T. Yamaguchi, K. Matsumoto, S. J. Tojo, T. Tamatani, M. Kitajima, N. Makino, Y. Ishimura and M. Suematsu, Induction of heme oxygenase-1 suppresses venular leukocyte adhesion elicited by oxidative stress: role of bilirubin generated by the enzyme, Circ. Res., vol. 85, pp. 663-671, 1999.
[53] P. S. Miguel, P. S. Mark, P. G. Isabel, V. Tatiana, O. B. Pascal, Y. Jia, T. Y. Tsui and H. B. Fritz, Hemo oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation, The Journal of immunology, vol. 172, pp. 3553-3563, 2004.
[54] S. H. Juan, T. S. Lee, K. W. Tseng, J. Y. Liou, S. K. Shyue, K. K. Wu and L. Y. Chau, Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice, Circulation, vol. 104, pp. 1519-1525, 2001.
[55] S. F. Yet, M. D. Layne, X. Lin, Y. H. Chen, B. Ith, N. E. Sibinga and M. A. Perrella, Absence of heme oxygenase-1 exacerbates atherosclerotic lesion formation and vascular remodeling, FASEB J., vol. 17, pp. 1759-1761, 2003.
[56] S. L. Hsiu, C. W. Tsao, Y. C. Tsai, H. J. Ho and P. D. L. Chao, Determinations of morin, quercetin and their conjugate metabolites, Biol. Pharm. Bull., vol. 24, pp. 967-969, 2001.
[57] C. L. Hsieh, P. D. L. Chao and S. H. Fang, Morin sulphates/glucuronides enhance macrophage function in microgravity culture system. European Journal of Clinical Investigation, vol. 35, pp. 591-596, 2005.
[58] Y. C. Chen, S. C. Shen and H. Y. Lin, Rutinoside at C7 attenuates the apoptosis-inducing activity of flavonoid, Biochemical Pharmacology, vol. 66, pp. 1139-1150, 2003.
[59] S. Suseela, Y. Michael, C. D. Eric, E. H. Melissa, E. R. Anna, L. Norbert, A. B. Judith and C. H. Catherine, Glucose regulates monocyte adhesion through endothelial production of interleukin-8, Circ. Res., vol. 92, pp. 371-377, 2003.
[60] G. Gisela, M. Criselda, Z. Estrella, M. Ang´elica, R. Elba, F. M. Luis and L. M. Rebeca, Dehydroepiandrosterone inhibits the TNF-alpha- induced inflammatory response in human umbilical vein endothelial cells, Atherosclerosis, (In press, 2006).
[61] M. T. Christi, A. C. Jennifer, R. H. John and S. C. Karleen, Effect of tumor necrosis factor-α and interleukin-1α on heme oxygenase-1 expression in human endothelial cells, Am. J. Physiol., vol. 274, pp. 883-891, 1998.
[62] M. T. Christi, A. C. Jennifer, R. H. John, S. C. Karleen, TNF-α and IL-1α induce heme oxygenase-1 via protein kinase C, Ca2+, and phospholipase A2 in endothelial cells, Am. J. Physiol., vol. 276, pp. 1493-1501, 1999.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top