跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 18:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪欣瑋
研究生(外文):Hsin-Wei Hung
論文名稱:股骨頸偏移距離與骨柄遠端固定長度對於髖關節再置換術後穩定度之影響
論文名稱(外文):The influence of femoral neck offset and extent of distal fixation of femoral stem on the stability of postoperative femur in THA revision
指導教授:陳文斌陳文斌引用關係
指導教授(外文):Weng-Pin Chen
學位類別:碩士
校院名稱:中原大學
系所名稱:醫學工程研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:78
中文關鍵詞:遠端固定人工髖關節再置換手術有限元素法
外文關鍵詞:Finite element methoddistal fixationrevision THA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人工髖關節再置換術的目的在於達到術後正常解剖學位置,並儘可能保存病人骨存量。此手術必須先將舊有的股骨柄拔除,而在拔除的過程中極可能造成骨缺損發生,所以在重建上有其一定的困難度。對於這類型的病患,臨床上可用遠端固定法來達到術後穩定度,而許多研究也顯示這樣的固定法確實可達到其術後滿意的效果。
本研究目的為使用有限元素法分析對於骨柄直徑、緊配程度、緊配接觸長度、摩擦係數以及骨頸偏移距離參數做評估比較其對再置換手術術後穩定度的影響,爲了探討方便,分為簡單模型及真實模型。於簡單模型結果可得影響程度依序為:緊配程度>緊配接觸長度>股骨柄直徑>摩擦係數,真實模型為:緊配接觸長度>骨頸偏移距離。 根據分析所設定的限制條件及得到的結果,列出幾點臨床建議:(1)在股骨柄直徑為固定的情況下,緊配接觸長度越長(在本研究為4cm),術後穩定度越好。(2)於股骨柄直徑大或小均能達到相同的緊配接觸長度的條件下,選擇較小直徑的骨柄(在本研究中為15mm),可達到較好的穩定度,且可保存骨存量。(3)增加緊配程度,術後穩定度越高。
The goals of revision total hip arthroplasty (revion THA) include reconstruction of the anatomy and reparation of normal biomechanics, and preserve as much bone quality as possible. It probably lead to bone deficiency during the process of removing the loosened femoral stem so that it’s hard to reconstruction. Clinically, the use of distal fixation is good for these patients to reach the initial stability, and many previous studies revealed that such a distal fixation really got up to good stability.

The objective of the current study is to use finite element method to analyze the diameter of the femoral stem, undersized extent, distal fit length, friction coefficient and femoral stem offset, these parameters above were evaluated in effect of revision THA on post-operative stability. The finite element models were separated into simplified and real models. The results of simplified model showed that the undersized extent had the high priority in these affective factors, and other were distal fit length, the diameter of the femoral stem and the friction coefficient in sequence. The results of real model revealed that the distal fit length was priority over the femoral stem offset.

A few clinical suggestions based on our results were listed below:
(1) The longer the distal fit length (the current study is 4 cm) the better the stability on the premise that the diameter of femoral stem is invariable.

(2) The use of the smaller femoral stem (the current study is 15 mm) could reach the better stability and preserve bone quality so much on premise that the equivalent distal fit length were reached whether the larger femoral stem or not.

(3) The larger undersized extent the better the stability.
總目錄
摘要............................................................................................................. I
Abstract ......................................................................................................II
誌謝...........................................................................................................III
總目錄...................................................................................................... IV
圖目錄.....................................................................................................VII
表目錄.....................................................................................................XII
第一章 緒論...............................................................................................1
1.1 前言......................................................................................................1
1.2 髖關節構造及人工髖關節再置換術.................................................3
  髖關節解剖學及生物力學....................................................3
1.3 研究背景..............................................................................................8
1.4 研究目的............................................................................................16
第二章 材料與方法................................................................................17
2.1 研究流程............................................................................................17
2.2 簡單模型探討...................................................................................18
  簡單模型的建立..................................................................19
  簡單模型材料設定..............................................................21
  負載及邊界條件..................................................................22
  結果探討參數......................................................................23
2.3 真實模型探討...................................................................................25
  人造股骨模型建立..............................................................25
  人工股骨柄模型建立..........................................................26
  手術模擬及定位..................................................................28
  材料特性設定......................................................................29
  負載及邊界條件設定..........................................................29
  介面特性設定......................................................................30
  生成網格模型......................................................................31
  分析組數設定......................................................................33
  結果探討參數......................................................................33
2.4 模型收斂測試...................................................................................34
第三章 結果.............................................................................................37
3.1 簡單模型探討結果...........................................................................37
  CosmosWorks 與Marc 結果驗證.......................................37
  不同緊配程度-蒙麥斯應力比較........................................40
  摩擦係數的影響..................................................................45
  骨柄直徑與緊配接觸長度的比較......................................46
3.2 實際模型結果...................................................................................48
  股骨上的蒙麥斯應力比較..................................................48
股骨柄末端位移分佈..........................................................52
  Micromotion 的比較............................................................53
第四章 討論.............................................................................................55
4.1 簡單模型- CosmosWorks 與Marc 結果驗證..................................55
4.2 簡單模型-不同緊配程度下骨頭的蒙麥斯應力..............................57
4.3 簡單模型-轉動位移文獻比較..........................................................59
4.4 簡單模型-摩擦係數的影響..............................................................61
4.5 簡單模型-骨柄直徑與緊配接觸長度比較......................................62
4.6 真實模型-股骨上的高應力..............................................................64
4.7 真實模型與簡單模型比較...............................................................67
4.8 真實模型-offset 的影響....................................................................68
4.9 研究假設與實際情形的差異...........................................................71
第五章 結論.............................................................................................72
參考文獻...................................................................................................74

圖目錄
【圖1.1】人工髖關節置換術簡單示意圖[3]..........................................2
【圖1.2】髖關節生理解剖圖[4]..............................................................3
【圖1.3】人體解剖三平面[5]..................................................................4
【圖1.4】髖關節於三個平面上的活動(a)彎曲及伸展(b)外展及內收(c)
外轉及內轉[6]............................................................................................4
【圖1.5】股骨生理解剖圖[7]..................................................................5
【圖1.6】人工股骨柄再置換術前評估[8]..............................................6
【圖1.7】拔除初次置換股骨柄[4]..........................................................7
【圖1.8】清除骨水泥[4]..........................................................................7
【圖1.9】股骨頭損壞分類 (a) Type I (b) Type II (c) Type Ⅲ (d) Type
Ⅳ[14]..........................................................................................................9
【圖1.10】再置換手術使用遠端固定法術後追蹤圖(a)術後兩個禮拜(b)
術後18 個月(c)術後5 年。[26] .............................................................12
【圖1.11】Meneghini 等人實驗裝置[27] .............................................13
【圖2.1】研究流程圖............................................................................17
【圖2.2】Meneghini 等學者實驗裝置圖[27] .......................................18
【圖2.3】簡單模型示意圖....................................................................20
【圖2.4】在undereamed 0.2mm 之下,選用骨柄直徑為18mm 的模型。
(a) 遠端接觸長度4cm (b) 遠端接觸長度3cm (c) 遠端接觸長度2cm
...................................................................................................................20
【圖2.5】於Marc 及CosmosWorks 軟體中負載及邊界設定............22
【圖2.6】人造股骨CT 影像.................................................................25
【圖2.7】人造股骨模型(a)皮質骨(b)海綿骨(c)組合圖.......................26
【圖2.8】ZMR 尺寸參考.......................................................................27
【圖2.9】ZMR 細部尺寸參考...............................................................27
【圖2.10】股骨柄CAD 模型................................................................28
【圖2.11】模擬植入骨柄手術示意圖..................................................29
【圖2.12】正常步態週期髖關節作用力分佈圖[34]............................30
【圖2.13】介面設定示意圖..................................................................31
【圖2.14】四面體10 節點網格模型(a)海綿骨(b)皮質骨(c)股骨柄(d)
組合...........................................................................................................32
【圖2.15】不同元素邊長的實體網格模型(a)4mm (b)5mm (c)6mm
(d)7mm......................................................................................................35
【圖3.1】Cosmos 軟體圓柱座標參考示意圖......................................37
【圖3.2】CosmosWorks 與Marc 結果驗證-骨柄上的蒙麥斯應力比較
...................................................................................................................38
【圖3.3】Cosmos 與Marc 結果驗證-骨頭上的蒙麥斯應力比較......39
【圖3.4】Cosmos 與Marc 結果驗證-骨柄徑向方向位移量..............39
【圖3.5】Cosmos 與Marc 結果驗證-骨頭徑向方向位移量..............40
【圖3.6】緊配的變形放大示意圖(a)CosmosWorks (b) Marc .............41
【圖3.7】CosmosWorks 結果:相同骨柄直徑及接觸長度下,不同
undersize 之蒙麥斯應力及變形情形......................................................41
【圖3.8】Marc 結果:相同骨柄直徑及接觸長度下,不同undersize
之蒙麥斯應力及變形情形......................................................................42
【圖3.9】CosmosWorks 結果剖面視圖:相同骨柄直徑及接觸長度下,
不同undersize 之蒙麥斯應力及變形情形.............................................43
【圖3.10】Marc 結果剖面視圖:相同骨柄直徑及接觸長度下,不同
undersize 之蒙麥斯應力及變形情形......................................................43
【圖3.11】不同緊配程度下骨柄上的蒙麥斯應力變化......................44
【圖3.12】不同緊配程度下骨頭內徑上的蒙麥斯應力變化..............44
【圖3.13】不同摩擦係數骨柄轉動位移比較 (a)緊配接觸4 cm (b)緊
配接觸3 cm..............................................................................................46
【圖3.14】undersized 0.2mm 之下,不同骨柄直徑及接觸長度的骨柄
轉動位移...................................................................................................47
【圖3.15】undersized 0.5mm 之下,不同骨柄直徑及接觸長度的骨柄
轉動位移...................................................................................................47
【圖3.16】40mm 股骨頸偏移距離下於不同緊配接觸長度下之股骨內
側應力分佈(a)2 cm (b)3 cm (c)4 cm .......................................................48
【圖3.17】45mm 股骨頸偏移距離下於不同緊配接觸長度下之股骨內
側應力分佈(a)2 cm (b)3 cm (c)4 cm .......................................................49
【圖3.18】股骨內側擷取應力範圍示意圖..........................................49
【圖3.19】40mm 股骨頸偏移距離下於不同緊配接觸長度下之股骨內
側應力分佈...............................................................................................50
【圖3.20】45mm 股骨頸偏移距離下於不同緊配接觸長度下之股骨內
側應力分佈...............................................................................................50
【圖3.21】髓內腔擷取應力範圍示意圖..............................................51
【圖3.22】40mm 股骨頸偏移距離下於不同緊配接觸長度下之髓內腔
應力分佈...................................................................................................51
【圖3.23】45mm 股骨頸偏移距離下於不同緊配接觸長度下之髓內腔
應力分佈...................................................................................................52
【圖3.24】擷取股骨柄末端的平均合位移之區域圖(白色圓圈內區域)
...................................................................................................................52
【圖3.25】股骨柄末端於不同offset 及緊配接觸下之平均合位移...53
【圖3.26】Micromotion 的比較............................................................54
【圖4.1】不同緊配程度下骨頭內外徑的平均蒙麥斯應力................58
【圖4.2】CosmosWorks 圓柱座標示意圖............................................62
【圖4.3】undersized 0.2 mm 下不同骨柄直徑於不同接觸長度的轉動
角度...........................................................................................................63
【圖4.4】undersized 0.5 mm 下不同骨柄直徑於不同接觸長度的轉動
角度...........................................................................................................63
【圖4.5】股骨內側於不同offset 及緊配長度之蒙麥斯最大應力.....65
【圖4.6】股骨內側於不同緊配程度下之最大蒙麥斯應力................66
【圖4.7】真實與簡單模型與不同緊配程度下時股骨內側最大蒙麥斯
應力分布...................................................................................................67
【圖4.8】不同offset 與緊配接觸長度下之micromotion ...................68

表目錄
【表1.1】Meneghini 實驗組數..............................................................13
【表2.1】簡單模型分析組數................................................................21
【表2.2】簡單模型材料特性設定[33]..................................................22
【表2.3】Meneghini 等人實驗之結果[27] ...........................................23
【表2.4】扭矩負載設定........................................................................23
【表2.5】材料特性設定[33]..................................................................29
【表2.7】分析組數設定........................................................................33
【表2.8】不同元素長度下的應變能誤差百分比................................35
【表2.9】不同元素長度下的局部蒙麥斯應力值比較(單位:MPa)…36
【表4.1】不同offset 下micromotion 的影響百分比..........................69
【表4.2】不同緊配程度下,micromotion 的影響百分比..................69
[1]Lai, Y.S., Wei, H.W., Cheng, C.K., 2004. An analysis of hip replacement data of Taiwan. 50th Annual Meeting of the Orthopaedic Research Society, San Francisco, USA.

[2]Laupacis, A., Bourne, R., Rorabeck, C., Feeny, D., Wong, C., Tugwell, P., et al, 1993. The effect of elective total hip replacement on health-related quality of life. Journal of Bone and Joint Surgery – American Volume 75: 1619-1626.

[3]A.D.A.M. healthcare center:http://adam.about.com

[4]eOrthopod : http://www.eorthopod.com/

[5]Hall, S.J.: Basic Biomechanics, third edition, The McGraw-Hill company.

[6]Nordin, M., Frankel, V.H. : Basic biomechanics of the musculoskeletal system, third edition, Lippincott Williams & Wilkims.

[7]http://academic.wsc.edu/faculty/jatodd1/351/ch8outline.html

[8]Hozack, W.J., 2001. Issues in revision total hip arthroplasty. State-of-the-Art Orthopaedics 2000, Whistler, BC, Canada.

[9]Galante, J.O., 1991. The biologic effects of implant materials. Journal of Orthopaedic Research 9: 760-775.

[10]Bedzinski, R., Bernakiewicz, M., 1998. Experimental and numerical investigations in a femur with hip endoprosthesis. Journal of Biomechanics 31: 90.

[11]Summer, D.R., Turner T.M., Igloria, R., Urban, R.M., Galante, J.O., 1998. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. Journal of Biomechanics 31: 909-917.

[12]Karachalios, Th., Tsatsaronis, C., Efraimis, G., Papadelis, P., Lyritis, G., Diakoumopoulos, G., 2004. The long-term clinical relevance of calcar atrophy caused by stress shielding in Total Hip Arthroplasty. The Journal of Arthroplasty 19: 469-475.

[13]Rietbergen, B.v., Huiskes, R., 2001. Load transfer and stress shielding of the hydroxyapatite-ABG Hip. The journal of Arthroplasty 16: 55-63.

[14]Saleh, K.J., Gross, A.F., Gafni, A., 1998. Radiographic classification for failed hip arthroplasty. 53rd Annual Meeting, Canadian Orthopaedic Association, Ottawa, Ontario.

[15]Kim, Y.M., Kim, H.J., Song, W.S., Yoo, J.J., 2004. Experiences with the BiCONTACT revision stems with distal interloacking. The Journal of Arthroplasty 19:27-34.

[16]Eisler, T.,Svensson, O., Iyer, V., 2000. Revision total hip arthroplasty using third-generation cementing technique. The Journal of Arthroplasty 15: 974.

[17]Schmale, G.A., Lachiewicz, P.F., Kelly, S.S., 2000. Early failure of revision total hip arthroplasty with cemented precoated femoral components: comparison with uncemented components at 2 to 8 years. The Journal of Arthroplasty 15: 718.

[18]Weeden S.H., Paprosky, W.G., 2002. Minimal 11-year follow-up of extensively porous-coated stems in femoral revision total hip arthroplasty. The Journal of Arthroplasty 17: 134-137.

[19]Cameron, H.U., 2002. The long-term success of modular proximal fixation stems in revision total hip arthroplasty. The Journal of Arthroplasty 17: 138-141.

[20]Lawrence J.M., Engh, C.A., Macalino, G.E., Lauro, G.R., 1994. Outcome of revision hip arthroplasty done without cement. Journal of Bone and Joint Surgery 76: 965-973.

[21]Berry, D.J., 2002. Femoral revision distal fixation with fluted, tapered grit-blasted stems. The Journal of Artheoplasty 17: 142-146.

[22]Cjiu, K.Y., Ng, T.P., Tang, W.M., Cheng, H.C., Hung, T.S.L., Tse, P.Y.T., Ko, P.S., 2003. The shape and size of femoral components in revision total hip arthroplasty among Chinese patients. Journal of Orthopaedic Surgery 11: 53-58.

[23]Krishnamurthy, A.B., MacDonald S.J., Paprosky, W.G., 1997. 5- to 13-year follow-up study on cementless femoral components in revision surgery. The Journal of Arthroplasty 12: 839-847.

[24]Engh, C.A., 1998. Distal porous coating yields optimal fixation. Current Orthopaedics 12: 232-238.

[25]Paprosky, W.G., Jablonsky, W., Magnus, R.E., 1993. Cementless femora; revision revision in the presence of severe proximal bone loss using diaphyseal fixation. Orthopaedic Transactions 17: 965.

[26]Kwong L.M., Miller A.J., Lubinus P., 2003. A modular distal fixation option for proximal bone loss in revision total hip arthroplasty- a 2- to 6-year follow-up study. The journal of Arthroplasty 18: 94-97.

[27]Meneghini, R.M., Hallab, N.J., Berger, R.A., Jacobs, J.J., Paprosky, W.G., Rosenberg, A.G., 2006. Stem diameter and rotational stability in revision total hip arthroplasty- a biomechanical analysis. Journal of Orthopaedic Surgery and Research.

[28]Kleemann, R.U., Heller, M.O., Stoeckle, U., Tayler, W.R., Duda, G.N., 2003. THA loading arising from increased femoral anteversion and offset may lead to critical cement stresses. Journal of Orthopaedic Research 21: 767-774.

[29]Viceconti, M., Cristofolini L., Baleani, M., Toni, A., 2001. Pre-clinical validation of a new partially cemented femoral prosthesis by synergetic use of numerical and experimental methods. Journal of Biomechanics 34: 723-731.

[30]Stolk, J., Verdonschot, N., Cristofolini, L., Toni, A., Huiskes, R., 2002. Finite element and experimental model of cemented hip joint reconstructions can produce similar bone and cement strains in pre-clinical tests. Journal of Biomechanics 35: 499-510.

[31]Chang, P.B., Robie, B.H., Bartel, D.L., 1999. Preclinical cost analysis of orthopaedic implant: a custom versus standard cementless femoral component for revision total hip arthroplasty. Journal of Biomechanics 32: 1309-1318.

[32]Pawlikowski, M., Skalski, K., Haraburda, M., 2003. Process of hip joint prosthesis design including bone remodeling phenomenon. Computers and Structures 81: 887-893.

[33]El’Shekh, H.F., MacDonald, B.J., Hashmi, M.S.J., 2003. Finite element simulation of the hip joint during stumbling: a comparison between static and dynamic loading. Journal of Materials Processing Technology 143-144:249-255.

[34]Bergmann, G., Deuretzbacher, G., Heller, M., Graichen, F., Rohlmann, A., Strauss, J., Duda, G.N., 2001. Hip contact force and gait patterns from routine activities. Journal of Biomechanics 34: 859-871.

[35]Viceconti, M., Pancanti, A., Dotti, M., Traina, F., Cristofolini, L., 2004. Effect of the initial implant fitting on the predicted secondary stability of a cementless stem. Medical & Biological Engineering & Computing 42: 222-229.

[36]Nigg, B.M., Herzog, W.H., 1994. Biomechanics of the musculosketletal system. John Wiley & Sons, Chichester.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 袁淑卿、翁聰標,「我國科技實力在一九九七年世界經濟論壇競爭力報告的探討」,科學發展月刊,第二十六卷第九期(民國87年9月),頁1101-1111。
2. 胡哲生,「兩岸產業協力體系對中心及衛星廠在大陸投資之影響」,輔仁管理評論,第七卷第一期(民國89年),頁1~30。
3. 孫震,「台灣的生產力提升與國家競爭力」,自由中國之工業,第八十八卷第一期(民國87年1月),頁1-12。
4. 洪毓甡,「加入WTO對我國勞動者就業之影響」,經濟情勢暨評論,第三卷第三期(民國86年8月),頁28-76。
5. 施振榮,「什麼才是競爭力」,天下雜誌,第一八七期(民國85年12月1日),頁152-154, 157-159。
6. 施建生,「國家競爭力的根源」,經濟前瞻,第十二卷第二期(民國86年3月),頁126-128。
7. 邱秀錦,「從互補到競爭―兩岸產業發展趨勢」,交流,民國88年4月。
8. 林秀英,「解讀國家競爭力指標(下)」,技術尖兵,第八十四期(民國90年12月),頁16-18。
9. 林公孚,「基本品質理念在高等教育上的應用」,品質管制月刊,民國85年,頁17-18。
10. 周濟,「在金融風暴中看台灣的投資、儲蓄與國家競爭力」,國立中山大學社會科學季刊,第一卷第四期(民國87年秋),頁97-120。
11. 李碧涵,「知識經濟時代國家競爭力的社會經濟分析」,國家發展研究,第一卷第一期(民國90年12月),頁27-61。
12. 宋餘俠、陳仕煥,「淺談文官核心能力與國家競爭力」,國家菁英,第一卷第二期(民國94年6月),頁21-32。
13. 吳惠林、謝宗林,「撥開國家競爭力的迷霧」,經濟前瞻,第六十五期(民國88年9月),頁104-111。
14. 吳惠林,「專上人力勞動報酬的決定因素-台灣的實證分析」,經濟論文叢刊,民國77年9月。
15. 吳迎春、刁曼蓬,「國家競爭力如何提升」,天下雜誌,第一九六期(民國86年9月1日),頁40-46。