跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/10 07:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾國軒
研究生(外文):Kuo Shuan Tseng
論文名稱:多指狀N型金氧半元件之靜電放電電流不均勻現象最佳化設計與分析
論文名稱(外文):Design And Analysis For Optimization of ESD Current Nonuniformity In A Multi-Finger NMOS Device
指導教授:黃至堯
指導教授(外文):Chih Yao Huang
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:79
中文關鍵詞:多指狀靜電放電電性過壓閘極耦合基底觸發閘極及基底觸發動態臨界
外文關鍵詞:multi-fingerESDgate coupledsubstrate triggeringsubstrate and gate triggeringdynamic threshold
相關次數:
  • 被引用被引用:0
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
閘極接地的N型金氧半靜電放電保護元件在靜電放電情形下通常會遭遇發生電流不均勻分布的問題,本論文利用類三度空間的方式來分析此類行為。運用熱電模擬本文成功的重現出0.6微米製程下不同多晶矽指狀通道內不均勻放電電流分布情形,觀察通道下之電流濃度分佈以及載子分布為證據以說明通道開啟之現象,而N型金氧半靜電放電元件加入電阻耦合控制之後,經由模擬驗證可發現對於多指狀複晶矽通道的同步開啟有顯著的提升。耦合電阻值必須在15 KΩ以上以確保遭靜電放電時多指通道的均勻導通開啟。 除常用的閘極耦合方式之外,本論文更進一步提出一閘極-基極共同驅動方法,藉以改善傳統閘極耦合外接電阻值過大的缺點,實驗證實藉由此方式可有效降低閘極電阻值且從RC時間控制電路上的應用中可發現,此結構在耦合電容加大時可維持住閘極電壓,進而避免閘極電性過壓問題。
Gate-grounded NMOS ESD protection devices usually suffer from the non-uniform current distribution issue during ESD events. A quasi-three-dimensional simulation technique is applied to analyze such an ESD behavior. Using electrothermal simulation the nonuniform discharge current distribution on different poly-gate fingers is successfully reproduced in a 0.6 m CMOS technology. Resistance gate-coupled configuration of NMOS device is also simulated and demonstrates a significant improvement in homogeneous poly-gate multi-finger turn-on. The current density and carrier concentration distribution were observed as the evidence of channel turn-on phenomenon. The coupled resistance should be as large as 15 KΩ to insure its effect in simultaneous multi-finger triggering during ESD events. Besides the conventional gate-coupled method, a substrate and gate triggering technique is further proposed in this work to improve the drawback of the traditional gate coupled structure. Simulation result shows that the gate resistance can be receded significantly by substrate and gate triggered method and we also found in RC time control application, this structure can maintain the gate voltage to avoid the gate over driven effect.
Contents
Abstract(Chinese)…………………………………………………………………………... i
Abstract(English)…………………………………………………………………………… ii
誌謝………………………………………………………………………………………...... iii
Content………………………………………………………………………………………. iv
Table List………………………………………………………………………………...….. vi
Figure Captions…………………………………………………………………………….... vii
Chapter1 INTRODUCTION……………………………………………………………...…. 1
1.1 Background………………………………………………………………….... 1
1.2 The ESD Issues……………………………………………………………….. 2
    1.3 Background of ESD Protection…………………………………………….…. 3
1.4 Thesis Organization……………………………………………………….….. 4
Chapter2 ESD STRESS MODELS, TEST STANDARDS, AND ESD PROTECTION
DEVICES………………………………………………………………………….
6
2.1 The ESD Models…………………………………………………………….... 6
2.1.1 Human Body Model(HBM)………………………………………….. 7
2.1.2 Machine Model(MM)………………………………………………… 8
2.1.3 Charged-Device Model(CDM)……………………………………… 9
2.1.4 Field-Induce Model(FIM)…………………………………………… 11
2.2 ESD Protection Devices…………………………………………………….… 12
2.2.1 Diffusion or poly resistor……………………………………………...... 12
2.2.2 P-N junction Diode…………………………………………………...… 14
2.2.3 Bipolar Junction Transistor……………………………………………... 16
2.2.4 MOS Transistor………………….…………………………………...… 19
Chapter 3 DESGIN AND ANALYSIS OF GATE COUPLED NMOS PROTECTION
DEVICE…………………………………………………………………………...
23
3.1 Motivation…..……………………………………………………………….... 24
3.2 Quasi Three Dimensional Simulation Scheme……………………………….. 29
3.3 Simulation Result and Analysis of Gate Coupled NMOS Device…………… 31
Chapter 4 DESGIN AND ANALYSIS OF SUBSTRATE AND GATE TRIGGERING
NMOS PROTECTION DEVICE……………………………………………..…..
43
4.1 Motivation……………………………………...……………….…………….. 43
4.2 Circuit Operation and Parameter Setting of Substrate and Gate Triggering
Scheme……………………………………………………………………...…
44
4.3 Design and Analysis of Substrate and Gate Triggering NMOS Device…….... 48
4.4 Potential Diagram Analysis……………………………………………….…... 55
4.5 Design and Analysis for RC Time Control Circuit………………………….... 58
Chapter 5 CONCLUSIONS……………………………………………………………......... 61
5.1 Conclusion……………………………………………………………………. 61
5.2 Future work……………………………………………………………….…... 62
Reference…………………………………………………………………………………..... 63
簡歷………………………………………………………………………………………...... 66
[1]A. W. Lindholm, “A case history of an ESD problem,” in Proceedings of the 7th EOS/ESD Symposium, pp. 10-14, 1985.
[2]A. Chatterjee T. Polgreen, , “Improving the ESD failure threshold of silicided n-MOS output transistors by ensuring uniform current flow,” IEEE Trans. on Electron Devices, vol-39, pp. 379-388, Feb. 1992.
[3]A. Amerasekera and C. Duvvury, “ESD, a pervasive reliability concern for IC technologies,” Proc. IEEE, vol-81, p. 690,1993.
[4]A. Amerasekera and C. Duvvury, “The impact of technology scaling on ESD robustness and protection circuit design,” in Proc. of EOS/ESD Symp., 1993, pp. 237-245.
[5]A. Amerasekera, M. –C. Chang, J. Seitchik, A. Chatterjee, K. Mayaram and J. –H. Chern, “Self-heating effects in basic semiconductor structures”, in IEEE Electr. Device, ED-40, 1836-1844, 1993.
[6]A. Amerasekera and J. Seitchik, “Electrothermal behavior of deep submicron nMOS transistors under high current snapback(ESD/EOS)conditions,” in Tech. Dig. IDEM, 455-458, 1994.
[7]A. Amerasekera, C. Duvvury, V. Reddy and M. Rodder, “Substrate triggering and salicided effects on ESD performance and protection circuit design in deep submicron CMOS processes,” in IEEE IEDM Tech. Dig., 1995, pp.547-550.
[8]A. Amerasekera, C. Duvvury, “ESD in Silicon Integrated Circuit,” Texas Instruments Inc., Wiley, 1995.
[9]A. Amerasekera, C. Duvvury and J.Z. Chen, , “Design methodology for optimizing gate driven ESD protection circuits in submicron CMOS processes,” Proc. of EOS/ESD Symp., 1997, pp. 230-239.
[10]Automotive Electrons Council, Charged Device Model Electrostatic Discharge Test;AEC-Q100-011 Rev A, 2001.
[11]Automotive Electrons Council, Machine Model Electrostatic Discharge Test;AEC-Q100-03 REV E, 2001
[12]C. Duvvury, D. Baglee, R. N. Rountree, R. McPhee, “ESD protection reliability in one micron CMOS technologies,” in Proc. IEEE IRPS, pp. 199-205, 1986.
[13]C. Duvvury and C. Diaz, “Dynamic gate coupled NMOS for efficient output ESD protection,” in Proc. IEEE IRPS, pp. 141-150, 1992.
[14]C. Duvvury , K.-H. Oh, K. Banerjee, R.W. Dutton, “Gate bias induced heating effect and implications for the design of deep submicron ESD protection,” IEEE IEDM Tech. Dig., 2001, pp.951-954.
[15]C. Duvvury, K.-H. Oh, K. Banerjee, R.W. Dutton, “Analysis of nonuniform ESD current distribution in deep submicron NMOS transistors,” IEEE Trans. on Electron Devices, vol-49, no. 12, pp. 2171-2182, Dec. 2002.
[16]C. Y. Huang, X. H. Liu, and T. L. Yuan, ”Quasi-three-dimensional simulation of ESD current nonuniformity in a multi-finger NMS device,” Taiwan ESD Conf., Proc. pp.135-140, Oct. 2004.
[17]C.-Y. .Huang “Simulation Prediction of Electro-thermal Behaviors of ESD N/ PMOS Devices,” Solid-State Electronics, vol-49, pp. 1925-1932, Dec. 2005.
[18]C.F. Hawkins, J. Soden and R.G. Wagner, “Extent and cost of EOS/ESD damage in an IC manufacturing process,” in Proceedings of the 15th EOS/ESD Symposium, pp. 49-55, 1993.
[19]D. P. Renaud and H. Hill, “ESD in semiconductor wafer processing,” in Proceedings of the 7th EOS/ESD Symposium, pp. 6-9, 1985.
[20]D. Scott, G. Giles and J. Hall, “A lumped element model for simulation of ESD failures in silicided devices,” Proc. of EOS/ESD Symp., 1986, pp. 41-47.
[21]Dept. of Defense, ”MIL-STD-883C method 3015.7, Military Standard Test Methods and Proc. For Microelectronic,s” Washington, D. C., U.S.A., 1989.
[22]D.L. Lin, “ESD sensitivity and VLSI technology trends: thermal breakdown,” in Proc. EOS/ESD Symp., 1993, pp. 73-81.
[23]D. Sinisky, C. M. Hu, F. Assaderaghi, J. Bokor, P. K. ping and S. A. Parke, “Dynamic threshold-voltage MOSFET for ultra-low voltage VLSI,” IEEE Trans. on Electron Devices, vol-44, no. 3, pp. 414-422, March 1997.
[24]E. S. Jesby and G. T. Dangelmayer, “Employee training for successful ESD control,” in Proceedings of the 4th EOS/ESD Symposium, pp. 41-48, 1982.
[25]E. J. McMahon T. N. Bhar, in Electrostatic Discharge Control, Hayden, New Jersey, 1983.
[26]E. Issaq and R. Merrill, “ESD design methodology,” in Proceedings of the 15th EOS/ESD Symposium, pp. 233-237, 1993.
[27]F. Assaderaghi, G. Shahidi, J. Mandelman, L. Hsu and S. Voldman, “Dynamic threshold body- and gate-coupled SOI ESD protection networks,” in Proc. EOS/ESD Symp., 1997, pp.210-220.
[28]ESD Association WG 5.2, “ESD STM5.2-1998: Standard Test Method for Electrostatic Discharge Sensitivity Testing-Machine Model(MM)Component Leve,l” 1998.
[29]ESD Association, “ESD STM5.3.1-1999:Standard Test Method for Electrostatic Discharge Sensitivity Testing-Charged Device Model(CDM)Component Level,” 1999.
[30]H. S. Lee, M. J. Chen, S. T. Chen, “Extraction of eleven model parameters for consistent reproduction of lateral bipolar snapback high-current I-V characteristics in NMOS devices,” IEEE Trans. on Electron Devices, vol-48, no. 6, pp. 1237-1244, June 2001.
[31]JEDEC Solid State Technology Association, “JESD22-A115-A:Electrostatic Discharge(ESD)Sensitivity Testing Machine Model(MM),” 1997.
[32]JEDEC Solid State Technology Association, “JESD22-C101-A:Filed-Introduced Charged Device Model Test Method for Electrostatic Discharge-Withstand Thresholds of Microelectronic Components,” 2000.
[33]JEDEC, “Electrostatic discharge(ESD)sensitivity testing human body model,” JEDEC Standard JESD22-A114-B, 2000.
[34]Japanese Electronic and Information Technology Industries Association, “EJAJ ED-4701/300-2, Environmental and endurance test methods for semiconductor devices,” Tokyo, Japan, 2004.
[35]MEDICI two-dimensional device simulator program user manual, ver. 2002.4, Synopsys Inc., Feb. 2003.
[36]O. J. McAteer, “A case history of an ESD problem,” in Proceedings of the 1th EOS/ESD Symposium, pp.1-3, 1979.
[37]O. J. McAteer, R. E. Twist and R. C. Walker, “Latent ESD failures,” in Proceedings of the 4th EOS/ESD Symposium, pp. 41-48, 1982.
[38]P. R. Bossard, R. G. Chemelli and B. A. Unger ”ESD Damage from Triboelectrically Charged IC Pins,” in Pronc. 3rd EOS/ESD Symposium, ESD Association, Rome, NY, USA, pp. 17-22, 1980.
[39]R. W. Dutton, “Bipolar transistor modeling of avalanche generation for computer circuit simulation,” in IEEE T. Electron Dev., ED-22, 334-338, 1975.
[40]R. N. Shaw, “A Programmable Equipment for ESD Testing to the Charged Device Model,” in Pronc. 8th EOS/ESD Symposium, ESD Association, Rome, NY, USA, pp. 232-237, 1986.
[41]T. Green, “A review of EOS/ESD field failures in military equipment,” in Proceedings of the 10th EOS/ESD Symposium, pp. 7-14, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. [29]邱文彥、張揚祺、楊磊(2002),陽明山竹子湖溼地水文水質之調查研究,「國家公園學報」,第十二卷,第一期,1-20頁。
2. 4. 杜玉振、古青翔,「台灣上市公司融資限制與投資決策關係之研究–拔靴複製法之應用」,證券金融,第六十七卷,51-79,民國八十九年十月。
3. 2. 王健安、沈中華,「資訊不對稱環境下,公司投資與銀行融資限制關係之研究」,管理學報,第二十卷,第四期,721-748,民國九十二年八月。
4. [58]陳文福、林文傑、洪文傑(1997),坡向影像在鯉魚潭水庫集水區土地利用分類之研究,「水土保持學報」,第二十九卷,第二期,183-195頁。
5. [64]曾明遜(1998),濕地保育價值與評價:使用價值與非使用價值,「中興大學法商學報」,第三十四期,273-306頁。
6. [67]曾國雄、曹勝雄、廖耀東(1992),台北都會區土地使用型態與環境品質之研究,「都市與計劃」,第十九卷,第一期,33-52頁。
7. [69]馮正民、江俊良(1988),計畫評估方法之評述,「規劃學報」,第十五期,65-86頁。
8. [79]楊冠政(1999),永續發展的倫理,「環境教育季刊」,第三十七期, 82-86頁。
9. [85]劉靜榆(2000),淺談英國海岸及濕地保護區之經營管理,「自然保育季刊」,第三十期,6-11頁。
10. [86]劉靜靜、邱文彥(1996),濕地形成與定義,「科學月刊」,第二十七卷,第一期,10-15頁。