跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/13 00:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳弘斌
研究生(外文):Hong-Bin Chen
論文名稱:鋁鎂合金表面沉積無電鍍鎳氧化鋁複合層及其腐蝕磨耗性質研究
論文名稱(外文):Deposition of nickel-Al2O3 composition coatings on Al-Mg alloys by electroless plating technique and its corrosion wear properties
指導教授:李正國李正國引用關係
指導教授(外文):Cheng-Kuo Lee
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:75
中文關鍵詞: 無電鍍 無電鍍鎳複合鍍層 氧化鋁 電化學動態極化 腐蝕磨耗 表面粗糙度
外文關鍵詞:Electroless nickelElectroless nickel composite coatingsElectrochemical polarizationAluminium OxideCorrosion -WearSurfa
相關次數:
  • 被引用被引用:8
  • 點閱點閱:580
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
無電鍍鎳沉積於基材上,有助於增加基材的耐腐蝕與耐磨耗性,因此廣泛應用在石油、化學、塑膠、機械、電子、軍事、航空等工業。本研究以無電鍍法,在無電鍍鎳液加入不同濃度的氧化鋁粉末(0.3μm)鍍析於5083鋁鎂合金基材表面上,以探討無電鍍鎳層與無電鍍鎳複合鍍層,分別對鍍膜的耐磨耗、耐腐蝕、耐腐蝕磨耗做研究比較。首先利用掃描式電子顯微鏡(SEM)和X光能量散射分析儀(EDS),對鍍膜腐蝕前後的表面微結構與形貌及元素成分含量分析討論,以維克氏微硬度測試與表面粗度計量測鍍膜硬度及表面粗糙度。電化學動態極化方法,量測分析鍍膜的抗腐蝕與抗腐蝕磨耗性,以及使用無電鍍鎳氧化鋁鍍膜塊對燒結氧化鋁陶瓷環,鍍膜表面進行乾磨耗與腐蝕磨耗試驗,分別於空氣中與3.5%NaCl腐蝕溶液環境下。
實驗結果顯示無電鍍鎳氧化鋁複合鍍層在氧化鋁粉末濃度達20~25g/L時,鍍膜的氧化鋁粉末有較均勻及緻密附著,使得鍍膜有最佳的抗腐蝕性。在空氣中與3.5%NaCl腐蝕溶液進行磨耗試驗,氧化鋁複合鍍膜與5083鋁鎂合金基材相比,有較低的摩擦係數及較少的磨損量,顯示氧化鋁複合鍍膜對5083鋁鎂合金有優越的磨耗腐蝕保護性。在3.5%NaCl溶液進行電化學動態極化磨耗試驗時,氧化鋁複合鍍膜也比無電鍍鎳層及5083鋁鎂合金均有較佳的抗腐蝕膜耗性,鍍膜沒有腐蝕磨耗破壞現象。
Deposition of nickel coating on substrate, the coatings have been widely used in the oil, chemical, plastic, mechanical, an electronic, military affairs and aviation industries owing to increase the wear, abrasion and corrosion resistance of substrate. The purpose of this study is to investigate the wear, corrosion and corrosion-wear resistance of electroless nickel coatings and electroless nickel composite coatings containing Al2O3 powder (diameter 0.3μm) additive with different concentration for compared. Surface morphologies, element compositions and surface roughness of the composite coatings before and after all tests are analyzed by scanning electron microscopy (SEM), X-ray energy dispersive analyzer (EDS) and surface roughness measurement. Also, the surface hardness of these composite coatings is measured by Micro Vickers Hardness test instrument. Electrochemical polarization measurements are performed for analyzing both corrosion and wear-corrosion characteristics under static and wearing conditions, using the block-on-ring surface friction manner to evaluate the dry wear and wear-corrosion behavior of these composite coatings in air and 3.5% NaCl solution, respectively. The friction ring counterpart is made of a sintered Al2O3.
The experimental results indicated that all the electroless nickel composite coatings possessed a beneficial effect to improve the corrosion protection, wear and wear-corrosion resistance for the 5083 Al-Mg alloy substrate. The corrosion resistance of the composite coatings increases with increasing concentration of Al2O3 powder, and concentration of 20-25 g/L the maximum corrosion resistance is found, the hardness of electroless nickel composite coatings with increasing concentration. Both dry wear in air and wet wear in 3.5% NaCl solution, the electroless nickel composite coatings as comparing with 5083 aluminum alloy substrate show lower coefficient of friction and less wear loss. This evidences that electroless nickel composite coatings have an excellent protection of wear corrosion failure. Further performing potentiodynamic polarization test during wear in 3.5% NaCl solution, the electroless nickel composite coatings also indicate a better wear corrosion resistance as comparing with electroless nickel coating and 5083 aluminum alloy substrate, moreover the coating surface without any significant wear failure phenomena.
中文摘要.............................................................i
英文摘要............................................................ii
致謝................................................................iv
圖目錄 ............................................................vii
表目錄...............................................................x
第一章 前言...........................................................1
第二章 文獻回顧.......................................................3
2.1鋁合金.......................................................3
2.1.1 鋁合金特性...............................................3
2.2無電鍍法.....................................................4
2.2.1 無電鍍特性...............................................4
2.2.2 無電鍍鎳成分與反應機構....................................5
2.2.3 無電鍍鎳的影響因素........................................7
2.3腐蝕的定義....................................................8
2.3.1 腐蝕的種類...............................................8
2.4磨耗的定義...................................................10
2.4.1 影響耐磨耗性的因素.......................................10
2.4.2 磨耗類型...............................................10
2.4.3 磨耗機構...............................................13
2.5磨耗腐蝕....................................................14
2.6電化學量測...................................................15
2.6.1 極化原理...............................................15
2.6.2 混合電位原理............................................17
第三章 實驗步驟......................................................19
3.1無電鍍鎳磷鍍膜...............................................20
3.1.1 試片製作...............................................20
3.1.2 試片表面處理............................................20
3.1.3 有機溶劑與鍍液配製.......................................21
3.1.4 實驗過程...............................................22
3.1.5 鍍著操作控制............................................24
3.2觀察薄膜表面微結構............................................25
3.3表面粗度測定器...............................................26
3.4微硬度試驗...................................................27
3.5乾磨耗試驗...................................................28
3.6電化學腐蝕試驗...............................................28
3.7腐蝕磨耗試驗.................................................30
第四章 實驗結果與討論.................................................31
4.1鍍膜表面微結構與機械性質分析...................................31
4.1.1 鍍膜表面微結構..........................................31
4.1.2 鎳磷鍍膜沉積微結構.......................................38
4.1.3 鍍膜表面元素分析........................................42
4.1.4 鍍膜表面粗糙度分析.......................................45
4.1.5 微硬度試驗..............................................47
4.2磨耗試驗....................................................50
4.2.1 乾磨耗試驗..............................................50
4.2.2 濕磨耗試驗..............................................55
4.3電化學腐蝕分析...............................................60
4.4腐蝕磨耗試驗.................................................66
第五章 結論..........................................................72
參考文獻..........................................................73
[1] 方國治等編著,機械材料實驗,高立圖書有限公司,台北,民國九十二年元月。
[2] 王裕淵、謝銘郎,「鏡面加工之無電鍍鎳技術」,機械工業雜誌,249期,224-231
頁,民國九十二年十二月。
[3] 林冠宇,「熱處理對經過無電鍍鎳處理後之鐵粉的化學組成及結構影響研究」,國立
成功大學,碩士論文,民國九十二年。
[4] 柯賢文,腐蝕及其防制,全華科技圖書(股)有限公司,民國九十年。
[5] 高正華,「Pb、Cu 元素對熱壓燒結Al-Si合金磨耗腐蝕行為之影響」,國立中央大
學碩士論文,民國九十年。
[6] 陳鉅昆,「添加碳化矽顆粒之鎳-磷中介層對氮化鈦陶瓷面層磨潤性質之研究」,國立
成功大學,博士論文,民國九十二年一月。
[7] 陳豐彥、何信威,燒結摩擦材料,粉末冶金手冊,中華民國粉末冶金協會,民國八十
四年。
[8] 陳偉亮,「異方向性導電膠覆晶接合之研究」,國立成功大學,碩士論文,民國八十
八年。
[9] 許仁哲,「內應力對無電鍍鎳銅磷析鍍於鋁基材上影響之研究」,國立成功大學,博
士論文,民國九十三年。
[10] 神戶德藏著,莊萬發譯著,無電解鍍金,第一章、第三章,復漢出版社,民國七十四
年。
[11] 曾錫萍,「等通道彎角擠製參數對5083 鋁合金之影響」,國立中央大學,民國九十
三年。
[12] 劉俊英,「複合電鍍與高性能引擎」,材料與社會,第二十七期,民國七十八年三
月。
[13] 劉俊英、彭裕民、王紀雯、吳裕惊、劉達全,「複合電鍍之應用實務」,中國材料科
學學會,民國八十二年論文集,p96,1993。
[14] 劉國雄等,工程材料科學,全華科技圖書,台北,民國八十六年。
[15] 蕭一清,「5083 鋁合金低溫超塑性研發與變形機構分析」,國立中山大學,博士論
文,民國九十年。
[16] 鐘文生,「無電鍍與真空吸引浸透法製造SiC粒子強化鋁基複合材料」,國立清華大
學材料科學工程研究所,博士論文,民國八十六年五月。
[17] A. Brenner, G. Riddell, J. Res. Nat. Bur. Std., Vol37, pp31,
1946
[18] ASTM Designation, G 69-97, pp. 268-271.
[19] C. K. Fang, C. C. Huang, T. H. Chuang, “Synergistic effects of
wear and corrosion for Al2O3 particulate-reinforced 6061
aluminum matrix composites”, Metallurgical and Materials
Transactions A, 30A, pp. 643-651, 1999.
[20] G. Salvago and G. Fumagall, Met. Finish, 85(3), pp.31-35, 1987.
[21] G. O. Mallory and J. B. Hajdu, Electroless Plating:
Fundamentals and Applications, AESF, Orlando, Florida, 1990,
Chapter 1.
[22] G. G. Gawrilov, Chemical (Electroless) Nickel-Plating ,
Portcullis Press Limited, Redhill, Surrey, 1979, Chapter 5.
[23] G. O. Mallory and J. B. Hajdu, Electroless Plating:
Fundamentals and Applications, AESF, Orlando, Florida, 1990,
Chapter 2.
[24] H. G. Schenzel, H. Kreye, “Improved Corrosion Resistance of
Electroless Nickel-Phosphorus Coating”, Plat. Surf. Fin , 77
(10), 50, 1990.
[25] Ik-HyunOh, Jae-Young Lee, Jae-Kil Han, Hee-Jung Lee, Byong-Taek
Lee“Microstructural characterization of Al2O3–Ni composites
prepared by electroless deposition” Journal of Surface and
Coatings Technology, 192, 39– 42, 9 April 2004.
[26] I. Iwasaki, S. C. Riemer, J. N. Orlich, “Corrosive and abrasive
wear in ore grinding”, Wear, 103, pp. 253-267, 1985.
[27] J. K. Dennis, T. E. Such, Nickel and Chromium Plating, 3rd
Edition, ASM, Materials Park, Ohio, 1993, Chap. 5.
[28] K. Wong, K. Chi. “Application of Electroless Nickel Plating in
the Semiconductor Microcircuit Industry”, Plating and Surface
Finishing, pp.70-76, July 1988.
[29] KARL-HEINZ ZUM GAHR, Microstructure and Wear of Materials,
ELSEVIER Science Publishing Company Inc, 1987.
[30] K. H. Hur, J. H. Jeong, “Microstructures and Crystallization of
Electroless Ni-P Deposits”, J. Mater. Sci, 25, 2573, 1990.
[31] K. Parker. “Electroless Nickel State of the Art ” , Plat.
Surf. Fin, 79(3), 29, 1992.
[32] Lingzhong Du, Binshi Xu Shiyun Dong, Hua Yang and Yixiong
Wu. “Preparation, microstructure and tribological properties of
nano-Al2O3/Ni brush plated composite coatings”, Surface and
Coatings Technology, 192, 311 – 316, 3 June 2004.
[33] M. A. Trudgeno, J. R. Griffiths, British Corrosion Journal, 21
(2), pp.113, 1987.
[34] M. Fontana and N. D. Greene, “Corrosion Engineering”, Ncgraw-
Hill Press(1978).
[35] N. K. Dirjal, K. A. Holbrook, “The Role of Electroless Plating
Bath Constituents in the Catalytic Oxidation of the
Hypophosphite Ion” , Plating and Surface Finishing , pp.74-77,
April 1998.
[36] N. G. Fontana and N. D. Greene, “Corrosion will cost U.S. an
estimated126 billion dollars in 1982”,Ibid, Feb. 1983.
[37] Ovidio A. Leon, Mariana H. Staia, Hans E.
Hintermann.“Deposition of Ni –P-BN(h) composite autocatalytic
coatings”, Surface and Coatings Technology, pp.108-109, pp.461-
465, 1998.
[38] P. Sampath Kumar, P. Kesavan Nair, “Effect of phosphorus
contenton the relative proportion of crystalline and amorphous
phases in electroless NiPdeposit”, Journal of Materials Science
Letters , 13, pp.671-674,1994.
[39] P. Sampath Kumar, P. Kesavan Nair. ”Studies on crystallization
of electroless Ni-P deposits” , Journal of Materials Processing
Technology, 56, pp.511-520,1996.
[40] R. Weil, G. J. Stanko, and D. E. Moser, Plat. Surf. Finish., 63
(1976)34.
[41] R. P. Tracy, G. J. Shawhan. Materials Perform, 29(7), pp.65,
1990.
[42] R. P. Tracy, J. Colaruotolo, A. MisercoIa and B. R. Chuba,
Ibid, 25(8), pp.21-29, 1986.
[43] R. M. Lukes. “The Chemistry of the Autocatalytic Reduction of
Copper by Alkaline Formaldehyde” Plating , 51, pp.969, 1964.
[44] S. M. Monir Vaghefi, A. Saatchi, M. Ebrahimian-
Hoseinabadi. “Deposition and properties of electroless Ni-P-B4C
composite coatings”, Surface and Coatings Technology, 168,
pp.259-262, 2003.
[45] S. H. Ahn, J. H. Lee, J. G. Kim, and J. G. Han, “Localized
corrosion mechanisms of the multilayered coatings related to
growth defects”, Surface and Coatings Technology, 177-178,
pp.638, 2004.
[46] S. W. Watson, B. W. Madsen, S. D. Cramer, “Wear-Corrosion study
of white cast irons”, Wear, 181-183, 469-475, 1995.
[47] V. M. Dubin, S. D. Lopatin. “Selective Electroless Ni
Deposition on a TiW Underlayer for Integrated Circuit
Fabrication”, Thin Solid Films, 226, 87, 1993.
[48] W. D. Fields. R. N. Duncan, J. R. Zickgraf and The ASM coming
and Electroless Nickl Plating, “Electroless Nickel Plating”
Metals Handbook, 9th ed., Vol5, (American Society for Metals,
1982) P219.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top