(54.236.58.220) 您好!臺灣時間:2021/03/05 06:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭穎駿
研究生(外文):Yin-Chun Cheng
論文名稱:類鑽薄膜對鑽石修整器磨耗腐蝕之研究
論文名稱(外文):Study of Diamond-Like Carbon on Wear-Corrosion Properties of Diamond Conditioner
指導教授:譚安宏
指導教授(外文):An-Hung Tan
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:64
中文關鍵詞:類鑽碳磨耗腐蝕鑽石修整器田口實驗設計法
外文關鍵詞:Diamond-Like Carbonwearcorrosiondiamond conditionerTaguchi design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:75
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究探討三種不同之鑽石修整器對磨耗腐蝕之影響。分別以鎳電鍍層(ED)和鎳
鉻硬焊層(BD)兩種合金來結合鑽石磨粒於不鏽鋼基板上;另外,再以真空陰極電弧法
沉積一層類鑽碳膜(DLC)於鎳鉻硬焊層之鑽石修整器(BDD)表面。經由磨耗腐蝕實驗
得知,相較於電鍍方式,以鎳鉻硬焊製成之鑽石修整器,明顯無鑽石磨粒剝離情形。
由於電鍍製成鑽石修整器之鑽石排列較密集,與對磨塊接觸容易產生滑動現象,同時
造成較低的摩擦係數以及較少之對磨塊重量損失。適當的鑽石排列有利於鑽石磨粒刺
入對磨物體之表面,以更有效率的來修整阻塞表面。與單純鎳電鍍或鎳鉻硬焊之鑽石
修整器比較,類鑽碳膜鍍在鎳鉻硬焊鑽石修整器表面,可提高25%的移除率,在抗磨
耗與抗腐蝕方面均有極佳的表現。
為了進一步改善類鑽碳膜在磨耗腐蝕之應用,本研究利用田口實驗設計法來探討
陰極電弧法將類鑚碳膜沉積於無電鍍鎳基材時,基板偏壓(bias)、電弧電流(current)、
氬氣流量(argon flow)及氮/氬氣比例(N2/Ar ratio)等四個製程控制因子對腐蝕磨耗特性
的影響。實驗結果顯示,以氮/氬氣比例及基板偏壓對薄膜結構、粗糙度、硬度與磨
耗腐蝕性質影響最大。隨著氮/氬氣比例增加,造成薄膜成分中氮/碳比例(N/C ratio)
上升,拉曼光譜強度比(ID/IG)增加,代表薄膜結構趨向石墨化;因此而降低薄膜硬度
與耐磨耗腐蝕特性。基板偏壓的增加,造成表面溫度提高,引起薄膜之拉曼光譜強度
比(ID/IG)上升,石墨相聚集,因而提高表面粗糙度與腐蝕電流密度。
There are three kinds of conditioners discussed; they were bonded by electroplating
nickel, brazing Ni-Cr alloy and DLC films deposition on the brazed conditioner. After a
wear corrosion test, the brazing process shows no diamond fall-out when compared with
the electroplating process. The dense distribution of diamond grits caused a lower
friction coefficient and a weight loss of counterpart, due to the formation of sliding
phenomenon during the wear-corrosion test. The suitable clearances between each
diamond grit benefits the penetration against counterpart, and indeed scrape efficiently.
DLC films deposited on the conditioner surface of brazed Ni-Cr alloy conditioner which
exhibits the best overall performance in terms of a higher removal rate, a lower wear loss
and a better corrosion resistance compared with electroplating and brazing conditioners.
Subsequently, in order to evaluate the effect of proceeding parameter with
wear-corrosion properties of DLC films using cathodic arc deposition. There were four
factors with three levels for the evaluation as L9 orthogonal array which were substrate
bias, arc current, argon flow rate, N2/Ar ratio, in deposited procedure respectively. The
two factors, N2/Ar flow and substrate bias were significant factors for structure, roughness,
hardness, and wear-corrosion properties in the DLC films. When N2/Ar ratio increased,
promoted the N/C ratio raising and the ID/IG enlarging, thus decreased the hardness and
wear-corrosion properties. With increased substrate bias, lead to an over-heat on
substrate, the ID/IG was increased due to sp2 cluster size enlarge, roughed its surface.
Abstract (in Chinese)……………………………………………………………………………… i
Abstract (in English)……………………………………………………………………………… ii
Acknowledgments………………………………………………………………………………… iv
Contents…………………………………………………………………………………………… v
Table list……………………………….………………………………………………………….. vii
Figure list………………………………………………………………………….………………. viii
1. Introduction………………………………………………………………….………………….. 1
2. Literature survey…………………………………………………………….………………….. 8
2.1 Diamond conditioner……………………………………………….………………… 8
2.2 Diamond-Like Carbon………………………………………………………..……… 11
3. Experimental procedure………………………………………………………………………… 15
3.1 Material Preparation……………………………………………………..…………… 15
3.2 Surface analysis……………………………………………………………….……… 17
3.3 Analysis the Bonding Structure of Diamond-Like Carbon…………………………… 17
3.3.1 ESCA………………………………………………………….…........………… 18
3.3.2 Raman……………………………………………………………...........……… 18
3.4 Mechanical Hardness…………………………………………………………….…… 19
3.5 Electrochemical test………………………………………………………...………… 20
3.6 Wear-Corrosion test………………………………………………………...………… 21
4. Results and discussion……………………………………………………………………..…… 24
4.1 Wear-Corrosion Properties of Diamond Conditioners in CMP Slurry…………..…… 24
4.1.1 Surface analysis……………………….………………………………………… 24
4.1.2 Electrochemical properties……………………………………………………… 24
4.1.3 Wear-corrosion properties…………….………………………………………… 25
4.1.4 Worn surface observation……………..………………………………………… 27
4.2 Wear-Corrosion properties of Diamond-Like Carbon in 3.5% NaCl Aqueous
Solution…………………………………………………………………………………
29
4.2.1 Bonding structure…………………..…………………………………………… 29
4.2.1.1 N/C ratio……………………..……………………………………………… 29
4.2.1.2 ID/IG ratio…………………….……………………………………………… 30
vi
4.2.2Roughness………………………………………………………………………… 31
4.2.3 Hardness………………………………………………………………………… 31
4.2.4 Electrochemical properties……………………………………………………… 32
4.2.5 Wear-corrosion properties…………………………………….………………… 33
4.2.5.1 Wear-corrosion current density……………………………………………… 33
4.2.5.2 Friction coefficient………………………………………..………………… 33
5. Conclusions…………………………………………………………………...………………… 58
6. References……………………………………………………………………………………… 60
1. 胡紹中,「銅製程化學機械拋光介紹」,清雲科技大學機械所專題講座,民國
九十四年十一月九日。
2. B. J. Hooper, G. Byrne, S. Galligan, “Pad conditioning in chemical mechanical
polishing”, Journal of Materials Processing Technology, 123, pp. 107-113, 2002.
3. P. S. Pan, C. R. Yang, K. H. Yang, “Study on new type of matrix material of
electroplating diamond tools -copy paper”, Key Engineering Materials, 202-203,
pp. 245-248, 2001.
4. K. H. Lin, S. F. Peng, S. T. Lin, “Sintering parameters and wear performances of
vitrified bond diamond grinding wheels”, International Journal of Refractory
Metals & Hard Materials, International Journal of Refractory Metals & Hard
Materials, in press, 2005.
5. A. K. Chattopadhyay, L. Chollet, H. E. Hintermann, “Experimental investigation
on induction brazing of diamond with Ni-Cr hardfacing alloy under argon
atmosphere”, Journal of Materials Science, 26, pp. 5093-5100, 1991.
6. http://diamond.kist.re.kr/DLC/.
7. A. C. Ferrari, “Diamond-like carbon for magnetic storage disks”, Surface and
Coating Technology, 180-181, pp. 190-206, 2004.
8. J. C. Sung, Diamond films and diamond-like carbon.
9. G. Dearnaley and J. H. Arps, “Biomedical applications of diamond-like carbon
(DLC) coatings: A review”, Surface and Coating Technology, 200, 7, pp.
2518-2525, 2005.
10. C. R. Lin, C. T. Kuo, “Improvement of mechanical properties of electroplated
diamond tools by microwave plasma CVD process”, Surface and Coating
Technology, 110, pp. 19-23, 1998.
61
11. L. W. de Resende, E. J. Corat, V. J. Trava-Airoldi and Nélia F. Leite, “Multi-layer
structure for chemical vapor deposition diamond on electroplated diamond tools”,
Diamond and Related Materials, 10, 3-7, pp. 332-336, 2001.
12. S. F. Huang, H. L. Tsai, S. T. Lin, “Effect of brazing route and brazing alloy on
the interfacial structure between diamond and bonding matrix”, Material
Chemistry and Physics, 84, pp. 251-258.
13. Y. W. Li, Y. B. Shue, C. F. Chen, T. C. Yu, J. K. Chang, “Substrate bias effect on
amorphous nitrogenated carbon films deposited by filtered arc deposition”,
Diamond and Related Materials, 11, pp. 1227-1233, 2002.
14. E. Tomasella, L. Thomas, M. Dubois, C. Meunier, “Structural and mechanical
properties of a-C:H thin films grown by RF-PECVD”, Diamond and Related
Materials, 13, pp. 1618-1624, 2004.
15. W. Zhang, A. Tanaka, K. Wazumi, Y. Koga, “Structural, mechanical and
tribological properties of diamond-like carbon films prepared ender different
substrate bias voltage”, Diamond and Related Materials, 11, pp. 1837-1844,
2002.
16. M. C. Kan, J. L. Huang, J. C. Sung, K. H. Chen, D. F. Lii, “Nano-tip emission of
tetrahedral amorphous carbon”, Diamond and Related Materials, 12, pp.
1691-1697, 2003.
17. M. W. Moon, J. W. Chung, K. R. Lee, K.H. Oh, R. Wang, A.G. Evans, “An
experimental study of the influence of imperfections on the buckling of
compressed thin films”, Acta Materialia, 50, pp. 1219-1227, 2002.
18. J. F. Lin, Z. C. Wan, P. F. Wei, H. Y. Chu, C. F. Ai, “Effect of nitrogen content on
mechanical properties and tribological behaviors of hydrogenated amorphous
carbon films prepared by ion beam assisted chemical vapor deposition”, Thin
Solid Films, 466, pp. 137-150, 2004.
62
19. J. Robertson, “Diamond-like amorphous carbon”, Material Science and
Engineering R, 37, 129-281, 2002.
20. A. H. Tan, C. S. Wei, “Study of media design on acoustic emission and take-off
velocity by using the Taguchi method”, IEEE Transaction on Magnetics, 41, 1,
pp.933-935, Feb. 2005.
21. D. Marton, K. J. Boyd, A. H. Al-Bayati, S. S. Todorov, J. W. Rabalais, “Carbon
nitride deposited using energetic species: a two-phase system”, Physical Review
Letters, 73, 1, pp. 118-121, July 1994.
22. A. C. Ferrari, J. Robertson, “Interpretation of Raman spectra of disordered and
amorphous carbon”, Physical Review B, 61, 20, pp. 14095-14107, May. 2000.
23. Sˇ. Sˇimu°nkova´, O. Bla´hova´, I. Sˇ teˇpa´nek, “Mechanical properties of thin
film–substrate systems”, Journal of Materials Processing Technology, 133, pp.
189-194, 2003.
24. W. W. Hsu, C. C. Yang, C. A. Huang, Y. S. Chen , “Electrochemical corrosion
studies on Co–Cr–Mo implant alloy in biological solutions”, Material Chemistry
and Physics, 93, pp. 531-538, 2005.
25. Y. H. Wang, H. X. Wang, M. Z. Wang, Y. Z. Zheng, “Brazing of Ti/Ni-coated
diamond”, Key Engineering Materials, 202-203, pp. 147-150, 2001.
26. J. C. Sung, K. Kan, M. Sung, E. Sung, “Cermet composite coating on diamond
dresser for in-situ dressing of chemical mechanical planarization”, Diamond and
Related Materials, in press.
27. Z. Zhou, L. Xia, M. Sun, “The investigation of carbon nitride films deposited at
various substrate temperature and N2/Ar flow ratios by vacuum cathodic arc
method”, Applied Surface Science, 222, pp. 327-337, 2004.
28. W. C. Chan, M. K. Fung, I. Bello, C. S. Lee, S. T. Lee, “Nitrogenated amorphous
carbon films synthesized by electron cyclotron resonance plasma enhanced
63
chemical vapor deposition”, Diamond and Related Materials, 8, pp. 1732-1736,
1999.
29. A. C. Ferrari, S. E. Rodil, and J. Robertson, “Interpretation of infrared and
Raman spectra of amorphous carbon nitrides”, Physical Review B, 67,
pp.155306, 2003.
30. M. K. Fung, W. C. Chan, Z. Q. Gao, I, Bello, C. S. Lee, S. T. Lee, “Effects of
nitrogen incorporation on structure of a-C:H films deposited on polycarbonate by
plasma CVD”, Diamond and Related Materials, 8, pp. 472-476, 1999.
31. S. Zhang, X.T. Zeng, H. Xie, P. Hing, “A phenomenological approach for the
Id/Ig ratio and sp3 fraction of magnetron sputtered a-C films”, Surface and
Coatings Technology, 123, pp. 256-260, 2000.
32. Z. Zhou, L. F. Xia, Y. Sun, ‘The influence of arc currents on the properties of
carbon nitride films deposited by vacuum cathodic arc method’, Thin Solid Films,
413, pp. 26-31, 2002.
33. Y. Lifshitz, ‘Hydrogen-free amorphous carbon films: correlation between growth
conditions and properties”, Diamond and Related Materials, 5, pp. 388-400,
1996.
34. S. Sattel, T. G. Ben, H. Roth, M. Scheib, R. Samlenski, R. Brenn, H. Ehrhardt, J.
Robertson, “Temperature dependence of the formation of highly tetrahedral
a-C:H”, Diamond and Related Materials, 5, pp. 425-428, 1996.
35. J. Jiang, R. D. Arnell, “The effect of substrate surface roughness on the wear of
DLC coatings” Wear, 239, pp. 1-9, 2000.
36. Z. Y. Rong, M. Abraizov, B. Dorfman, M. Strongin, X. Q. Yang, D. Yan , F. H.
Pollak, “Scanning tunneling microscopy of diamond-like nanocomposite films”,
Applied Physic Letter, 65, pp. 1379, 1994.
37. W. C. Chan, M. K. Feng, K. H. Lai, I. Bello, S. T. Lee, C. S. Lee, “Mechanical
64
properties of amorphous carbon nitride films synthesized by electron cyclotron
resonance microwave plasma chemical vapor deposition”, Journal of
Non-Crystalline Solids, 254, pp. 180-185, 1999.
38. J. X. Guo, Z. Sun, B. K. Tay, X. W. Sun, “Field emission from modified
nanocomposite carbon films prepared by filtered cathodic vacuum arc at high
negative pulsed bias”, Applied Surface Science, 214, pp. 351-358, 2003.
39. J. R. Shi, Y. J. Xu, J. Zhang, “Corrosion resistance of nitrogenated amorphous
carbon films prepared by facing target sputtering”, Surface and Coating
Technology, 198, pp. 437-440, 2005.
40. D. P. Dowling, P. V. Kola, K. Donnelly, T. C. Kelly, K. Brumitt, L. Lloyd, R.
Eloy M. Therin, N. Weill, “Evaluation of diamond-like carbon-coated
orthopaedic implants”, Diamond and Related Materials, 6, pp. 390-393, 1997.
41. R. Messier, A. P. Girl. R. A. Roy, “Revised structure zone model for thin film
physical structure”, Journal of Vacuum Science Technology, 2, pp. 500-503,
1984.
42. L. Fedrizzi, S. Rossi, F. Bellei, F. Deflorian, “Wear–corrosion mechanism of hard
chromium coatings”, Wear, 253, pp. 1173-1181, 2002.
43. H. Y. Bi, X. X. Jiang, S. Z. Li, “The corrosive wear behavior of Cr–Mn–N series
casting stainless steel”, Wear, 225-229, pp. 1043-1049, 1999.
44. K. Holmberg, A. Matthews, H. Ronkainen, “Coatings tribology—contact
mechanisms and surface design”, Tribology International, 31, pp. 107-120, 1998.
45. D. Liu, G. Benstetter, E. Lodermeier, I. Akula, I. Dudarchyk, Y. Liu, T. Ma,
“SPM investigation of diamond-like carbon and carbon nitride films”, Surface
and Coating Technology, 172, pp. 194-203, 2003.
46. Y. Liu, A. Erdemir, E. I. Meletis, “A study of the wear mechanism of
diamond-like carbon films”, Surface and Coating Technology, 82, pp. 48-56,
65
1996.
47. H. X. Li, T. Xu, J. M. Chen, H. D. Zhou, H. W. Lin, “The effect of applied dc
bias voltage on the properties of a-C:H films prepared in a daul dc-rf plasma
system”, Applied Surface Science, 227, pp. 364-372, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔