跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2024/12/06 16:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭富正
研究生(外文):Peng fucheng
論文名稱:鉑銠合金熱電偶晶粒成長與使用壽命之研究
論文名稱(外文):Study of grain growth and life cycle of Platinum/ Rhodium alloy thermocouple
指導教授:譚安宏
指導教授(外文):Au-Hung Tan
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:63
中文關鍵詞:熱電偶晶粒成長鉑銠合金
外文關鍵詞:ThermocouplesGrain sizePlatinum/Rhodium alloy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:421
  • 評分評分:
  • 下載下載:120
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是要探討鉑銠合金熱電偶的使用壽命,鉑銠合金熱電偶在1000℃時加熱時間相對於晶粒成長的關係,首先將熱電偶放在溫度1000℃的工作爐中,準備6組熱電偶加熱於不同時間條件下,再選取標準件熱電偶一起進行校正,和實驗中的鉑銠合金熱電偶電壓值相互比對,可以發現加熱時間愈久的熱電偶其溫度偏差值愈大,我們利用光學顯微鏡觀察晶粒的微結構,再計算出晶粒尺寸大小和線性迴歸分析,顯示出鉑銠合金熱電偶對於晶粒成長有相當好的線性關係,根據實驗結果進而判斷晶粒成長與溫度偏差量的關係,作為未來鉑銠合金熱電偶是否需要再校正的事先判斷,也可以估算出鉑銠合金熱電偶的使用壽命。
The purpose of this study is to research the life time of Platinum/ Rhodium alloy thermocouple, the relationship of heating temperature/time vs. grain growth, Firstly, we assembly the thermocouples, put it into calibration furnace then heat the thermocouples with different times, use calibrated standard wires to calibrate the heated wires, compare the output voltage values with standard wires. The wires were heated for a period, voltage output signal will decrease gradually, and it will cause temperature deviation condition. We checked the grain structure of the wires by optic-microscope, also, measured and calculated the grains size, we find the temperature deviation condition when the grain size greater than 94 μm, if the grain size within 94 μm, the wires can be calibrated again and will get a offset value for continuing use, it can lower the cost.
中文摘要 ……………………………………………………………………………… i
英文摘要 ………………………………………………………………………………… ii
致謝 …………………………………………………………………………………… iii
目錄 …………………………………………………………………………………… iv
表目錄 ………………………………………………………………………………… vi
圖目錄 ………………………………………………………………………………… vii
第一章 緒 論 ………………………………………………………………………… 1
1.1 前 言 …………………………………………………………………… 1
1.2 研究動機與目的………………………………………………………… 2
1.3 相關文獻回顧…………………………………………………………… 4
第二章 熱電偶溫度計………………………………………………………………… 6
2.1 溫度感測器……………………………………………………………… 6
2.2 熱電偶基本構造………………………………………………………… 9
2.2.1 量測原理…………………………………………………………… 12
2.2.2 熱電偶原理………………………………………………………… 14
2.2.3 熱電偶三大定律 …………………………………………………… 17
2.3 熱電效應………………………………………………………………… 21
2.4 冷接點影響……………………………………………………………… 22
2.5 補償導線………………………………………………………………… 24
2.6 鉑銠合金熱電偶特性…………………………………………………… 26
2.6.1 鉑銠合金相圖……………………………………………………… 26
2.6.2 各型熱電偶之優點與缺點………………………………………… 27
2.6.3 Thermal properties of thermocouple material…………… 28
2.6.4 貴金屬型熱電偶之容許差………………………………………… 29
第三章 校正系統與實驗方法………………………………………………………… 30
3.1 熱電偶比較量測系統…………………………………………………… 30
3.1.1 測量儀器設備……………………………………………………… 32
3.1.2 校正方法…………………………………………………………… 33
3.1.3 資料分析…………………………………………………………… 34
3.2 實驗方法………………………………………………………………… 36
3.2.1 安裝熱電偶溫度計的注意事項…………………………………… 37
3.2.2 熱電偶焊接………………………………………………………… 37
3.2.3 製造冰點環境……………………………………………………… 38
3.2.4 進行校正…………………………………………………………… 39
3.2.5 顯微組織觀察……………………………………………………… 40
3.2.6 晶粒大小計算……………………………………………………… 41
第四章 實驗結果與討論 ……………………………………………………………… 42
4.1 實驗結果………………………………………………………………… 42
4.2 晶粒大小對工作溫度的關係…………………………………………… 46
4.3. 晶粒成長關係…………………………………………………………… 53
4.4 晶粒大小對熱電偶使用壽命的影響…………………………………… 55
4.5 熱電偶使用壽命及校正關係…………………………………………… 57
第五章 結 論 ………………………………………………………………………… 59
參考文獻………………………………………………………………………………… 60
[1]汪建民,“金相組織分析”,工業技術研究院工業材料研究所,pp. 103-120,1986年。
[2]巫信輝,“數位化溫度控制器關鍵技術之探討”,國立中央大學機械工程研究所,碩士論文,2000年7月。
[3]吳政憲,“龍門加工中心機温生熱變形量測與分析”,機械月刊第二十九卷第三期,pp. 48-58,2003年三月號。
[4]吳朗,“溫度感測器理論與應用”,全華圖書,1990年2月。
[5]柯雲龍,”濺鍍法製造熱電偶運用於絲線銲接過程之溫度量測”,國立中正大學機械工程研究所,碩士論文,2000年7月。
[6]陳盛仁,“熱電偶及補償導線原理簡介”,化工技術第六卷第一期,pp. 158-163,1998年1月。
[7]詹前威,“高頻溫度量測研究”,私立元智大學機械工程研究所,碩士論文,2000年6月。
[8]溫博浚,“貴金屬型熱電偶溫度計比較校正程序”,工研院量測技術發展中心,pp. 9-11,2004年。
[9]鄭玉鈺,“溫度量測技術理論與實務”,工研院量測技術發展中心,第6章,pp. 1-62,2004年3月。
[10]羅國綸,”模內溫度即時量測薄膜矽基熱電偶之研製”,國立台北科技大學,機電整合研究所,碩士論文,1999年7月。
[11]A. Ghosh, M. K. Muju and S. Parija, “Microwelding using electrochemical discharge”, Tools Manufact, Vol. 37, No. 9, pp. 1303-1312, 1997.
[12]A. W. Van Herwarden and P. M. Sarro, “Thermal sensors based on the seebeck effect”, Sensors and Actuators, Vol. 10, pp. 321-346, 1986.
[13]American Society for Testing and Materials, “1999 Annual Book of ASTM Standards”, ASTM Standard E230-98, Vol. 14, pp. 109-284, 1994.
[14]C. D. Henning and R. Parker, “Transient response of an intrinsic thermocouple”, Transactions of the ASME, pp. 146-154, May 1967.
[15]D. M. Rowe, “CRC handbook of thermoelectrics”, Proceedings of the IEEE, Vol. 73, pp. 14-17, 1995.
[16]D. Hudoklin, I. Pusnik, J. Bojkovski and J. Drnovsek, “Simultaneous calibration of large number of thermocouples”, Transactions on Instrumentation and Measurement, Vol. 51, No. 5, pp. 1015-1018, 2002.
[17]G. W. Burns, M. G. Scroger, G. F. Strouse, M. C. Croarkin and W. F. Guthrie, “Temperature-electromotive force reference functions and tables for the letter-designated thermocouple types based on the ITS-90”, NIST Monograph 175, pp. 630-631, 1993.
[18]G. W. Burns, G. F. Strouse, B. W. Mangum and S. Wu, “New reference function for platinum-10% rhodium versus platinum (type S) thermocouples based on the ITS-90”, American Institute of Physics, Vol. 6, pp. 537-546, 1992.
[19]G. W. Burns, G. F. Strouse and B. W. Mangum, “New reference functions for platinum-13% rhodium versus platinum (type R) thermocouples based on the ITS-90”, American Institute of Physics, Vol. 6, pp. 559-564, 1992.
[20]G. F. Vander Voort, “Grain size measurement”, Practical Applications of Quantitative Metallography, ASTM STP 839, pp. 85-131, 1984.
[21]H. Ogura, M. Izuchi, Y. Yamada and M. Arai, “Thermoelectric properties of Pt/Pd thermocouples exposed to high temperature”, SICE 2002, August 5-7, Osaka, 02-0444, pp. 501-502, 2002.
[22]Http://www.kitco.com/market/, July 2006.
[23]H. Preston-Thomas, “The international temperature scale of 1990”, Metrologia, Vol. 27, pp. 3-10, 1990.
[24]International Electrotechnical Commission, “Revision of IEC 60 584-1: thermocouples - part 1 reference tables”, IEC Standard, pp. 155-158, 1995.
[25]L. D. Patino Lopez, M. A. Salhi, S. Dilhaire, S. Grauby, J. M. Rampnoux, S. Jorez and W. Claeys, “Thermal study of PN thermoelectric couple by laser induced Seebeck EMF measurement”, Superlattices and Microstructures, Vol. 35, pp. 375–387, 2004.
[26]K. G. Kreider, “Sputtered high temperature thin film thermocouples”, Journal of Vacuum Science Technology, Vol. 11, pp. 1401-1406, 1993.
[27]K. G. Kreider and G. Gillen, “High temperature materials for thin-film thermocouples on silicon wafers”, Thin Solid Films, Vol. 376, pp. 32-37, 2000.
[28]M. Suban, J. Tusek and M. Uran, “Use of hydrogen in welding engineering in former times and today”, Journal of Materials Processing Technology, Vol. 119, pp. 193-198, 2001.
[29]M. Gotoh, “Study of the immersion characteristic of thermocouples with a heat-pupe up to 960℃”, SICE 2002, August 5-7, Osaka, 02-0596, pp. 503-506, 2002.
[30]Metals Handbook, American Society for Metals, Metals Park, Ohio, 1948.
[31]N. B. Belecki, R. F. Dziuba, B. F. Field and B. N. Taylor, “Guidelines for implementing the new representations of the volt and ohm effective”, NIST Technology, Vol. 1263, pp. 72-74, June 1989.
[32]National Institute of Standards and technology, ”The International Practical Temperature Scale of 1968”, Metrologia, Vol. 12, pp. 7-17, 1976.
[33]Omega, The temperature handbook, pp. 126-137, 1989.
[34]P. Zhang, Y. X. Xu, R. Z. Wang and M. Murakami, “Fractal study of the fluctuation characteristic in the calibration of the cryogenic thermocouples”, Cryogenics, Vol. 43, pp. 53-58, 2003.
[35]R. L. Rusby, R. P. Hudson and M. Durieux, “Revised values for (t90-t68) from 630 °C to 1064 °C”, Metrologia, Vol. 31, pp. 149-153, 1994.
[36]S. M. Sze, “Semiconductor sensors”, John Wiley and Sons, Vol. 48, pp. 357-358, 1994.
[37]S. Middelhoek and S. A. Audet, “Silicon sensors”, Academic Press Limited, Vol. 17, pp. 168-171, 1989.
[38]T. B. Massalski, “Binary Alloy Phase Diagrams”, ASM International, Materials Park, Ohio, pp. 1879, 1990.
[39]T. J. Bajzek, “Thermocouples: a sensor for measuring temperature”, IEEE Instrumentation and Measurement Magazine, pp. 35-40, March 2005.
[40]W. F. Guthrie, M. C. Croarkin and G. W. Burns, “Statistical analysis of type S thermocouple measurements on the international temperature scale of 1990”, American Institute of Physics, Vol. 6, pp. 547-552, 1992.
[41]Z. M. Rdzawski and J. P. Stobrawa, “Microstructure and properties of the new Pt-Rh based alloys for high-temperature applications”, Journal of Materials Processing Technology, Vol. 153-154, pp. 681-687, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top