跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/12 12:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉俊志
研究生(外文):Chun-Chih Liu
論文名稱:以攝氧率及碎形維度分析A2/O系統膨化潛勢之研究
論文名稱(外文):Using oxygen uptake rate and fractal dimension to analyze bulking potential in A2/O activated sludge process
指導教授:邱仁杰邱仁杰引用關係白子易白子易引用關係
指導教授(外文):Ren-Jie ChiouTzu-Yi Pai
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:136
中文關鍵詞:膨化碎形維度污泥容積指數亞硝酸氮氧化菌氨氮氧化菌異營菌攝氧率
外文關鍵詞:ammonia oxidizing bacteriaheterotrophic organismsSludge Volume Indexbulkingfractal dimensionnitrite oxidizing bacteriaoxygen uptake rate
相關次數:
  • 被引用被引用:5
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:1
本研究以A2/O程序進行研究,程序之總進流量為67 ml min-1,好氧槽DO維持在2.0 ~ 3.0 mg L-1、pH維持在7.0 ~ 8.0、水力停留時間為10小時、污泥停留時間控制15天、污泥循環比為0.5、MLSS為2200 ~ 3000 mg L-1,厭氧與好氧體積比為2:6,探討模廠水質處理特性、不同污泥容積指數(Sludge Volume Index, SVI)與絲狀菌之相關性及以攝氧率實驗推求異營菌 (heterotrophic organisms, XH)、氨氮氧化菌 (ammonia oxidizing bacteria, XAOB)、 亞硝酸氮氧化菌 (nitrite oxidizing bacteria, XNOB) 之族群動力等。結果顯示水質處理去除效率方面,TCOD、SCOD、NH4+-N、TN、PO4-3去除率分別為91.9%、85.3%、95.4%、73.7%及42.0%。在增殖係數 (Yield﹐Y) 方面,異營菌、氨氮氧化菌、亞硝酸鹽氧化菌增殖係數分別為0.73 gCOD gCOD-1、0.23 gCOD gCOD-1、0.21 gCOD gCOD-1。在系統未膨化及膨化時,SVI與XH biomass取平均值後分別為123 ml g-1、236 ml g-1與361 mg L-1、704 mg L-1,其XH biomass增加百分比為95.0%,隨著SVI增加XH biomass增加3.0 mgL mlg-1。量測微生物碎形維度 (Fractional dimension,Df) 之變動後發現,於膨化時平均Df值為1.33。
In this study, the A2/O pilot plant was used to implement the experiment. The dissolved oxygen and pH were controlled between 2.0∼3.0 mg L-1 and in the range of 7.0∼8.0, respectively. The hydraulic retention time, sludge retention time and ratios of return sludge were controlled at 10 hour、15 days and 0.5, respectively. The objectives of this study were:(1) to investigate the removal efficiency of the A2/O pilot plant, (2) to observe the correlation between filamentous bacteria and different sludge volume index (SVI), and (3) to estimate heterotrophic/nitrifying species using oxygen uptake rate. Accroding to the results, the removal efficiency of total chemical oxygen demand, solution chemical oxygen demand, ammonia nitrogen, total nitrogen and orthoposphate for 91.9%, 85.3%, 95.4%, 73.7% and 42.0%, respectively. The yield of heterotrophic organisms, ammonia oxidizing bacteria and nitrite oxidizing bacteria were 0.73 gCOD gCOD-1, 0.23 gCOD gCOD-1 and 0.21 gCOD gCOD-1, respectively. When a steady state was reached, the average values of SVI and heterotrophic organisms biomass were 123 ml g-1 and 236 ml g-1, respectively. When bulking, their values were 361 mg L-1 and 704 mg L-1, respectively. The biomass increased by 95.0%. When bulking, to microorganisms fractal dimension, average value was 1.33 and it increased when SVI increased.
目 錄
摘 要 I
Abstract II
誌謝 Ⅲ
目 錄 IV
表 目 錄 VI
圖 目 錄 VII
符 號 表 X
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究內容 2
第二章 文獻回顧 4
2.1 生物處理程序之理論 4
2.2 生物除磷 5
2.2.1 影響生物除磷之因素 9
2.3 生物除氮 12
2.3.1 氮之硝化作用 17
2.3.2 氮之脫硝作用 18
2.4 污泥絲狀膨化之原因及對策 20
2.4.1 絲狀膨化之原因與現象 20
2.4.2 改善絲狀膨化污泥之對策 23
2.5 碎形理論 24
2.5.1 碎形之特性 25
2.5.2 碎形維度之應用 26
2.6 以攝氧率量化微生物biomass 之研究 27
2.7 以攝氧率量測微生物族群所應用之抑制劑 30
2.8 以短時間攝氧率推求增殖係數之理論 31
2.9 台灣活性污泥模式之發展【Pai et al., 2004】 33
2.9.1 溶解性成份"S?"之定義 35
2.9.2 溶解性成份"X?"之定義 36
第三章 實驗設備與方法 45
3.1 模型廠與實驗設備 45
3.2 模廠操作條件 47
3.3 分析項目與方法 48
3.3.1 分析項目 48
3.3.2 分析方法 49
3.4 絲狀菌及膠羽菌觀察及量測 50
3.5 增殖係數之推求 52
3.5.1 異營菌增值係數之推求 52
3.5.2 氨氮氧化菌增值係數之推求 52
3.5.3 亞硝酸鹽氮氧化菌增值係數之推求 53
3.6 攝氧率批次實驗 57
3.6.1 總攝氧率 57
3.6.2 異營菌攝氧率 57
3.6.3 氨氮氧化菌攝氧率 60
3.6.4 亞硝酸氧化菌攝氧率 60
3.6.5 攝氧率批次實驗之定義 62
3.7 演算法 63
3.7.1 XH最大生長速率常數及biomass量化公式之推求 63
3.7.2 XAOB最大生長速率常數及biomass量化公式之推求 64
3.7.3 XNOB最大生長速率常數及biomass量化公式之推求 65
第四章 結果與討論 66
4.1 A2/O程序於穩態操作下水質處理去除效率 66
4.1.1 水質去除率綜合討論 70
4.2 A2/O程序增殖係數分析 73
4.2.1 異營菌之增殖係數 73
4.2.2 氨氮氧化菌之增殖係數 75
4.2.3 亞硝酸鹽氮氧化菌之增殖係數 77
4.2.4 增殖係數分析之綜合討論 79
4.3 A2/O程序於未膨化時異營/硝化族群動力之分析 82
4.3.1 異營菌族群動力之分析 82
4.3.2 氨氮氧化菌族群動力之分析 89
4.3.3 亞硝酸鹽氮氧化菌族群動力之分析 96
4.4 A2/O程序於膨化時異營菌族群動力之分析 103
4.4.1 異營菌族群動力之分析 103
4.5 異營/硝化族群動力分析綜合討論 110
4.5.1 異營/硝化族µ值、b值之比較 110
4.5.2 異營菌biomass與SVI之比較 116
4.6 A2/O系統碎形維度之分析 119
4.6.1 量測不同SVI時Deq之分析與討論 119
4.6.2 量測不同SVI時Df值之分析與討論 120
4.6.3 量測不同SVI時菌絲長度之變化與其控制 127
第五章 結論與建議 129
5.1結論 129
5.2 建議 130
參考文獻(英文部分) 131
參考文獻(中文部分) 135
附錄一 136



表 目 錄
表2.1 去氮除磷之的關係相關性 5
表2.2 生物除磷之步驟 7
表2.3 生物處理脫氮作用機制 20
表2.4 污泥容積指數 22
表2.5 異營族群動力參數彙整 28
表2.6 硝化菌最大生長速率之比較 29
表2.7 硝化菌裂解速率之比較 29
表2.8 抑制劑之相關運用 31
表2.9 TWEA1計量矩陣 41
表2.10 TWEA1程序速率式 42
表2.11 TWEA1動力參數之定義及典型值 43
表2.12 TWEA1計量係數定義及典型值 44
表3.1 調勻池水質概況 47
表3.2 添加抑制劑所代表之意義 62
表4.1 A2/O程序模廠監測數據 66
表4.2 體積比2:2:6未膨化操作下水質處理去除率 67
表4.3 BNR程序水質處理效率 72
表4.4 不同體積比之YH值 80
表4.5 不同體積比之YAOB值 80
表4.6 不同體積比之YNOB值 81
表4.7 不同體積比異營菌動力參數之比較 113
表4.8 不同體積比硝化菌最大生長速率之比較 114
表4.9 不同體積比硝化菌裂解速率之比較 115
表4.10 未膨化時XH biomass與SVI之變化 117
表4.11 膨化時XH biomass與SVI之變化 117
表4.12 未膨化/膨化時XH biomass與SVI平均值之變化 118


圖 目 錄
圖1.1研究架構流程圖 3
圖2.1磷蓄積菌厭氧-好氧代謝模式示意圖 6
圖2.2厭氧-缺氧-好氧程序對於磷及氮之去除模式 7
圖2.3 PHB之合成與分解 9
圖2.4生物處理程序中氮的轉換 12
圖2.5自然界氮循環 13
圖2.6氮的氧化態 14
圖2.7廢污水中總氮 (TN) 之組成及分類 15
圖2.8廢污水中總凱氏氮之組成及分類 15
圖2.9廢污水中有機氮 (a)溶解性有機氮 (b)粒狀有機氮之分類 16
圖2.10膠羽生成菌與絲狀菌比生長速率比較圖 21
圖2.11異營菌與各種成份的反應途徑 39
圖2.12氨氮、亞硝酸鹽氮氧化菌與各種成份的反應途徑 39
圖2.13磷蓄積菌與各種成份的反應途徑 40
圖2.14水解與醱酵的反應途徑 40
圖3.1 A2/O模廠示意圖 46
圖3.2 A2/O模廠實照圖 46
圖3.3絲狀菌觀察及量測流程 51
圖3.4 YH實驗流程 54
圖3.5 YH + YAOB實驗流程 55
圖3.6 YH + YAOB + YNOB實驗流程 56
圖3.7 OURT實驗流程 58
圖3.8 OURH實驗流程 59
圖3.9 OURH + OURAOB實驗流程 61
圖3.10批次反應槽 62
圖4.1體積比2:2:6未膨化操作下TCOD濃度與去除率變化 68
圖4.2體積比2:2:6未膨化操作下SCOD濃度與去除率變化 68
圖4.3體積比2:2:6未膨化操作下NH4+-N濃度與去除率變化 69
圖4.4體積比2:2:6未膨化操作下TN濃度與去除率變化 69
圖4.5體積比2:2:6未膨化操作下PO4-3濃度與去除率變化 70
圖4.6 XH-1短時間攝氧率 73
圖4.7 XH-2短時間攝氧率 74
圖4.8 XH-3短時間攝氧率 74
圖4.9 XAOB-1短時間攝氧率 75
圖4.10 XAOB-2短時間攝氧率 76
圖4.11 XAOB-3短時間攝氧率 76
圖4.12 XNOB-1短時間攝氧率 77
圖4.13 XNOB-2短時間攝氧率 78
圖4.14 XNOB-3短時間攝氧率 78
圖4.15 XH-1攝氧率 83
圖4.16 XH-1攝氧率線性迴歸 83
圖4.17 XH-2攝氧率 84
圖4.18 XH-2攝氧率線性迴歸 84
圖4.19 XH-3攝氧率 85
圖4.20 XH-3攝氧率線性迴歸 85
圖4.21 XH-4攝氧率 86
圖4.22 XH-4攝氧率線性迴歸 86
圖4.23 XH-5攝氧率 87
圖4.24 XH-5攝氧率線性迴歸 87
圖4.25 XH-6攝氧率 88
圖4.26 XH-6攝氧率線性迴歸 88
圖4.27 XAOB-1攝氧率 90
圖4.28 XAOB-1攝氧率線性迴歸 90
圖4.29 XAOB-2攝氧率 91
圖4.30 XAOB-2攝氧率線性迴歸 91
圖4.31 XAOB-3攝氧率 92
圖4.32 XAOB-3攝氧率線性迴歸 92
圖4.33 XAOB-4攝氧率 93
圖4.34 XAOB-4攝氧率線性迴歸 93
圖4.35 XAOB-5攝氧率 94
圖4.36 XAOB-5攝氧率線性迴歸 94
圖4.37 XAOB-6攝氧率 95
圖4.38 XAOB-6攝氧率線性迴歸 95
圖4.39 XNOB-1攝氧率 97
圖4.40 XNOB-1攝氧率線性迴歸 97
圖4.41 XNOB-2攝氧率 98
圖4.42 XNOB-2攝氧率線性迴歸 98
圖4.43 XNOB-3攝氧率 99
圖4.44 XNOB-3攝氧率線性迴歸 99
圖4.45 XNOB-4攝氧率 100
圖4.46 XNOB-4攝氧率線性迴歸 100
圖4.47 XNOB-5攝氧率 101
圖4.48 XNOB-5攝氧率線性迴歸 101
圖4.49 XNOB-6攝氧率率 102
圖4.50 XNOB-6攝氧率線性迴歸 102
圖4.51膨化時XH-1攝氧率 104
圖4.52膨化時XH-1攝氧率線性迴歸 104
圖4.53膨化時XH-2攝氧率 105
圖4.54膨化時XH-2攝氧率線性迴歸 105
圖4.55膨化時XH-3攝氧率 106
圖4.56膨化時XH-3攝氧率線性迴歸 106
圖4.57膨化時XH-4攝氧率 107
圖4.58膨化時XH-4攝氧率線性迴歸 107
圖4.59膨化時XH-5攝氧率 108
圖4.60膨化時XH-5攝氧率線性迴歸 108
圖4.61膨化時XH-6攝氧率 109
圖4.62膨化時XH-6攝氧率線性迴歸 109
圖4.63 µH與SVI之關係 111
圖4.64 bH與SVI之關係 111
圖4.65 µAOB與SVI之關係 112
圖4.66 µNOB與SVI之關係 112
圖4.67 XH與SVI之關係 118
圖4.68 SVI為102 ml g-1時影像分析 121
圖4.69 SVI為114 ml g-1時影像分析 121
圖4.70 SVI為173 ml g-1時影像分析 122
圖4.71 SVI為191 ml g-1時影像分析 122
圖4.72 SVI為204 ml g-1時影像分析 123
圖4.73 SVI為256 ml g-1時影像分析 123
圖4.74 SVI為102 ml g-1時線性迴歸 124
圖4.75 SVI為114 ml g-1時線性迴歸 124
圖4.76 SVI為173 ml g-1時線性迴歸 125
圖4.77 SVI為191 ml g-1時線性迴歸 125
圖4.78 SVI為204 ml g-1時線性迴歸 126
圖4.79 SVI為256 ml g-1時線性迴歸 126
圖4.80 Df與SVI值之相關性 127
圖4.81 SVI與菌絲長度變化 128
參考文獻(英文部分)
Andreottola, G., Foladori, P., Gelmini, A., and Ziglio, G., “Biomass Active Fraction Evaluated by a Direct Method and Respirometric Techniques,” Water Science and Technology, Vol. 46, No. 1-2, pp.371-379(2002).
Argaman, Y., and Papkov, G., “A Steady-Ttate Model for the Single Sludge Activated Sludge System-Ⅱ Model Application,” Water Science and Technology, Vol. 29, No. 1, pp.147-153(1995).
Barnard, J. L., Stevens, G. M., and Lesile, P. J., “Desigen Strategies Nutrient Removal Plants,” Water Science and Technology, Vol. 17, No. 11-12, pp.147-162(1985).
Brouwer, H., Bloemen, M., Klapwijk, B., and Spanjers, H., “Feedforward control of nitrification by manipulating the aerobic volume in activated sludge plants,” Water Science and Technology, pp. 245-254(1998a).
Brouwer, H., Klapwijk, B., and Bloemen, M., “Identification of Activated Sludge and Wastewater Characteristics Using Respirometric Batch-experiments,” Water Research, Vol. 38, No. 3, pp.1240-1254(1998b).
Chandran, K., and Smets, B. F., “Applicability of Two-step Models in Estimating Nitrification Kinetics from Batch Respirograms,” Biotechnology and Bioengineering, Vol. 70, No. 1, pp.54-64(2000).
Comeau, Y., Hall, K. J., Hancock, R. E., and Oldham, W. K., “Biological Model for Biological Phosphorous,” Water Research, Vol. 20, No. 12, pp.1511-1517(1986).
Dawson, R. N., and Murphy, K. L., “The Temperature Dependency of Biological Denitrification,” Water Research, Vol. 6, No. 3, pp.71-80(1972).
Deinema, M. H., Van Loosdrecht, M., and Scholten, A., “Some Physiological Characteristics of Acinetobactor Spp. Accumulation Large Amounts of Phosphate,” Water Science and Technology, Vol. 17, No. 11-12, pp.119-125(1984).
Da Motta, M., Pons, M. N., Roche, N., and Vivier, H., “Characterisation of Activated Sludge by Automated Image Analysis,” Biochemical Engineering Journal, Vol. 9, pp.165-173(2001).
Da Motta, M., Pons, M. N., and Roche, N., “Study of Filamentous Bacteria by Image Analysis and Relation with Settleability,” Water Science and Technology, Vol. 46, NO. 1-2, pp.363-369(2002).
Dold, P. L., Jones, R. M., and Bye, C. M., “Importance and Measurement of Decay Rate When Assessing Nitrification Kinetics,” Water Science and Technology, Vol. 52, NO. 10-11, pp.469-477(2005).
Ferrer, J., Morenilla, J. J., Bouzas, A., and Garcia-Usach, F., “Calibration and Simulation of Two Large Wastewater Treatment Plants Operated for Nutrient Removal,” Water Science and Technology, Vol. 50, NO. 6, pp.87-94(2004).
Gernaey, A. K., Petersen, B., Ottoy, J., and Vanrolleghem, P., “Activated Sludge Monitoring with Combined Respirometric–titrimetric Measurements,” Water Research, Vol. 35, No. 5, pp.1280-1294(2001).
Harremoes, P., Haarob, A., Winther-Nielsen, M., and Thirsing, C., “Six Years of Pilot Plant Studies for Design of Treatment Plants for Nutrient Removal,” Water Science and Technology, Vol. 38, No. 1, pp.219-226(1998).
Heascoet, M. C., and Florentz, M., “Influence Ofnitrate on Biological Phosphorus Removal from Wastewater,” Water SA, Vol. 11, No. 1, pp.1-8(1985).
Henze, M., Grady, Jr. C.P.L., Gujer, W., Marais, G.v.R., and Matsuo, T., Activated Sludge Model No. 1, Scientific and Technical Report No.1, International Association on Water Pollution Research and Control, London(1987).
Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M.C., and Marais, G.v.R., Activated Sludge Model No.2, IAWQ Scientific and Technical Report No.3, IAWQ, London (1995a).
Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M.C., Marais, G.v.R., and van Loosdrecht, M.C.M., “Activated Sludge Model No.2d, ASM2d,” Wat. Sci. Tech., Vol. 39, No. 1, pp.165-182(1999).
Henze, M., Gujer, W., Mino, T., and van Loosdrecht, M.C.M., Activated Sludge Models: ASM1, ASM2, ASM2d and ASM3, IWA, London(2000).
Hooper, A. B., and Terry, K. R., “Specific Inhibitors of Ammonia Oxidation in Nitrosomonas,” J.Bacteriol, No. 115, pp. 480-485(1973).
Jenkins, D., “Manual on the Cause and Control of Activated Sludge Bulking and Foaming,” Water Research Commission, Pretoria, RSA(1985).
Jiang, T., Liu, X., Kennedy, M. D., Schippers, J. C., and Vanrolleghem, P. A., “Calibrating a Side-stream Bioreactor Using Activated Sludge Model No. 1,” Water Science and Technology, Vol. 52, NO. 10-11, pp.359-367(2005).
Kappeler, J., and Gujer, W., “Estimation of Kinetic Parameters of Heterotrophic Biomass Under Aerobic Conditions and Characterization of Wastewater for Activated Sludge Modelling,” Water Science and Technology, Vol. 25, No. 6, pp.125-139(1992).
Kappeler, J., and Brodmann, R., “Low F/M Bulking and Scumming: Towards a Better Understanding by Modeling,” Water Science and Technology, Vol. 31, No. 2, pp.225-234(1995).
Kartik, C., and Barth, F. S., “Applicability of Two-step Models in Estimating Nitrification Kinetics from Batch Respirograms Under Different Relative Dynamics of Ammonia and Nitrite Oxidation,” Biotechnology Bioengineering, Vol. 70, No. 1, pp.54-64(2000).
Kerrn-Jespersen, P. J., and Henze, M., “Biological Phosphorus Uptake Under Anoxic and Aerobic Conditions,” Water Research, Vol. 27, No. 4, pp.617-624(1993).
Kristensen, G. H., Jorgensen, P. E., and Henze, M., “Characterization of Functional Microorganism Groups and Substrate in Activated Sludge and Wastewater by AUR, NUR and OUR,” Water Science and Technology, Vol. 25, No. 6, pp.43-57(1992).
Kuba, T., Smolders, G., van Loosdrecht, M. C. M., and Heijnen, J. J., “Biological Phosphorus Removal from Wastewater by Anaerobic-anoxic Sequencing Batch Reactor,” Water Science and Technology, Vol. 27, No. 5-6, pp.241-252(1993).
Kuba, T., van Loosdrecht, M. C. M., and Heijnen, J. J., “Effect of Cyclic Oxygen Exposure on the Activaty of Denitrifying Phosphorus Removing Bacteria,” Water Science and Technology, Vol. 34, No. 1-2, pp.33-40(1996).
Katehis, D., Fillos, J., and Carrio, L. A., “Comparison of Bench Scale Testing Methods for Nitrifier Growth Rate Measurement,” Water Science and Technology, Vol. 46, NO. 1-2, pp.289-295(2002).
Leenen, E. J. T. M., van Boxtel, A. M. G. A., Englund, G., Tramper, J., and Wijffels, R. H., “Reduced Temperature Sensitivity of Immobilized Nitrobacter Agilis Cells Caused by Diffusion Limitation,” Elsevier Science Inc., Vol. 20, pp.573-580(1997).
Lee, D.S., Jeon, C.O., and Park, J.M., “Biological Nitrogen Removal with Enhanced Phosphate Uptake in a Sequencing Batch Reactor Using Single Sludge System,” Water Research, Vol. 35, No. 16, pp.3968-3976(2001).
Levin, G. V., and Shapiro, J., “Metabolic Uptake of Phosphorus by Wastewater Organisms,” J. Water Pollution Control Federatuon, Vol. 37, No. 6, pp.800(1965).
Mamais, D., and Jenkins, D., “The Effect of MCRT and Temperature on Enhanced Biological Phosphorus Removal,” Water Science and Technology, Vol. 26, No. 5-6, pp.955-965(1992).
Manga, J., Ferrer, J., Garcia-Usach and Sexo, A., “A Modofocation to the Activated Sludge Model No. 2 Based on the Competition Between Phosphorus-accumlating Organisms and Glycogen- accumlating Organisms,” Water Science and Technology, Vol. 43, No. 11, pp.161-171(2001).
Marsili-Libelli, S., and Tabani, F., “Accuracy Analysis of a Respirometer for Activated Sludge Dynamic Modeling,” Water Research, Vol. 36, pp.1181-1192(2002).
Meinhold, J., Pedersen, H., Arnold, E., Isaacs, S., and Henze, M., “Effect of Continuous Addtion of an Organic Substrate to the Anoxic Phase on Biological Phosphorus Removal,” Water Science and Technology, Vol. 46, No. 1-2, pp.371-379(1998).
Meinhold, J., Filipe, C. D. M., Daigger, T. G., and Isaacs, S., “Characterization of the Denitrifying Fraction of Phosphate Accumulating Organisms in Biological Phosphate Removal,” Water Science and Technology, Vol. 39, No. 1, pp.31-42(1999).
Mino, T., San Pedro, D. C., Yamamoto, S., and Matsuo, T., “Application of the IAWQ Activated Sludge Model to Nutrient Removal Process,” Water Science and Technology, Vol. 35, No. 8, pp.111-118(1997).
Mino, T., van Loosdrecht, M.C.M., and Heijnen, J.J., “Microbiology and Biochemistry of the Enhanced Biological Phosphate Removal Process,” Wat. Res., Vol. 32, No. 11, pp.3193-3207(1998).
Nowak, O., Svardal, K., and Schweighofer, P., “The Dynamic Bbehaviour of Nitrifying Activated Sludge Systems Influenced by Inhibiting Wastewater Compounds,” Water Science and Technology, Vol. 31, No. 2, pp.115-124(1995).
Pai, T.Y., Chuang, S.H., Tsai, Y.P., and Leu, H.G., “Development of Two-stage Nitrification/Denitrification Model (TaiWan Extension Activated Sludge Model NO.1) for BNR Process,” Journal of the Chinese Institute of Environmental Engineering, Vol. 14, No. 1(2004).
Pai, T.Y., Tsai, Y.P., Chou, Y.J., Chang, H.Y., Leu, H.G., and Ouyang, C.F., “Microbial Kinetic Analysis of Three Different Types of EBNR Process,” Chemosphere, Vol. 55, No. 1, pp.109-118(2004).
Pai, T.Y., “Modeling Nitrite and Nitrate Variations in A2O Process Under Different Return Oxic Mixed Liquid Using an Extended Model,” Water Research(2004).
Prendl, L., and Kroib, H., “Bulking Sludge Prevention by an Aerobic Selector,” Water Science and Technology, Vol. 385, No. 8-9, pp.19-27(1998).
Rieger, L., Koch, G., Kuohni, M., Gujer, W., and Siegrist, H., “The EAWAG Bio-p Module for Activated Sludge Model No.3,” Water Research, Vol. 35, No. 16, pp.3887-3903(2001).
Smolders, G.J.F., van Loosdrecht, M.C.M., and Heijnen, J.J, “A Metabolic Model for the Biological Phosphorus Removal Process,” Water Science and Technology, Vol. 31, pp.79-93(1995).
Takacs, I., and Fleit, E., “Modelling of the Micromorphology of the Activated Sludge Floc:Low DO, Low F/M Bulking,” Water Science and Technology, Vol. 31, No. 2, pp.235-243(1995).
Van Veldhuizen, H.M., Van Loosdrecht, M.C.M., and Heijnen, J.J., “Modelling Biological Phosphorus and Nitrogen Removal in a Full Scale Activated Sludge Process,” Water Research, Vol. 33, No. 16, pp.3459-3468(1999).
Wanner, J., Cech, J. S., and Kos, M., “New Process Design for Biological Nutrient Removal,” Water Science and Technology, Vol. 25, No. 4-5, pp.445-448(1992).
Wentzel, M. C., Ubisi, M. F., and Ekama, G. A., “Heterotrophic Active Biomass Component of Activated Sludge Mixed Liquor,” Water Science and Technology, Vol. 37, No. 4-5, pp.79-87(1998).

Wild, D., Von Schulthess, R., and Gujer, W., “Structure Modelling of Denitrification Intermediates,” Water Science and Technology, Vol. 31, No. 2, pp.45-54(1995).
參考文獻(中文部分)
白子易,「下水道系統生化動力模式建立之研究」,博士論文,國立中央大學環境工程學研究所,中壢(2001)。
白子易、蔡勇斌、莊順興、呂鴻光,「BNR活性污泥程序二階段硝化模式 (台灣活性污泥模式TWEA1) 之發展」,第十三屆下水道及水環境再生研討會論文集,台北,第299-308頁(2003)。
白子易、莊順興、許鎮龍、蘇昭郎,邱仁杰,「以台灣活性污泥模式 (TWEA1) 模擬A2O程序於變動SRT之硝化菌族群動力」,中華民國環境工程學會論文集,台中(2003)。
白子易、郭威良、周裕然、蔡勇斌、莊順興,「活性污泥TNCU3程序微生物族群變動分析: ASM2d之應用」,第九屆海峽兩岸環境保護學術研討會論文集,西安,第1704-1707頁(2004)。
朱校興、白子易、蔡勇斌、周金柱、廖婉君,「以攝氧率量測AO程序異營/硝化族群biomass及動力參數」,環境分析化學研討會,台南(2003)。
朱校興,「利用攝氧率量測AO活性污泥程序異營菌/硝化族群質量及動力參數之研究」,碩士論文,私立朝陽科技大學環境工程與管理系,台中(2004)。
林東陞,「變動槽體體積對TNCU3程序異營/硝化族群動力之研究」,碩士論文,私立朝陽科技大學環境工程與管理系,台中(2005)。
林進源、林東陞、白子易、蔡勇斌、黃啟書、翁家偉,「複合農藥廢水對TNCU-3程序異營菌族群質量及動力參數之影響」,中華民國環境工程學會,第二十九屆廢水處理技術研討會,台南(2004)。
林東陞、白子易、邱仁杰、蔡勇斌、劉俊志,「TNCU3程序異營/硝化族群數量對碳氮磷去除率之影響」,第十五屆下水道及水環境再生研討會,台北(2005)。
邱仁杰,「以厭氧性選種槽抑制活性污泥膨化之研究」,碩士論文,國立中央大學環境工程學研究所,中壢(1995)。
莊順興,「脫氮除磷代謝模式與反應動力之研究」,博士論文,國立中央大學土木工程學研究所,中壢(1997)。
陳國蔚,「重金屬對A2O系統微生物反應動力特性及菌相之影響」,碩士論文,國立暨南國際大學土木工程學研究所,南投(2004)。廖婉君,「利用攝氧率量測AO活性污泥程序異營菌質量及動力參數之研究」,碩士論文,私立朝陽科技大學環境工程與管理系,台中(2003)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top