(18.206.177.17) 您好!臺灣時間:2021/04/23 05:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李春明
研究生(外文):Chun-Ming Li
論文名稱:混凝程序去除二氧化矽之反應特性研究
論文名稱(外文):Characteristics of Silica Removal in Coagulation Process
指導教授:莊順興莊順興引用關係
指導教授(外文):Shun-Hsing Chuang
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:152
中文關鍵詞:回收再利用冷卻水化學混凝磷酸鹽矽酸鹽
外文關鍵詞:water recyclecooling watercoagulationphosphatesilica
相關次數:
  • 被引用被引用:12
  • 點閱點閱:1366
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:97
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的為探討鋁系混凝劑(Alum與PACl)對矽酸鹽去除之特性,探討其最佳去除效率、最適pH條件及去除機制,並探討磷酸鹽對SiO2混凝之影響,瞭解鋁、矽、磷三者相互間之反應,並嘗試建立反應特性之模擬公式,作為混凝劑劑量添加之參考依據,研究成果期能提高處理水回收再利用之價值。
實驗結果發現在只有矽酸鹽存在之系統中,鋁系混凝劑能有效去除水中矽酸鹽,最佳去除條件為中性pH環境。且發現使用Alum時,水中電導度升高明顯,主因為其解離完全,解離出之水合鋁物種及硫酸根離子導致電導度上升較PACl明顯。
濁度部分使用Alum會導致溶液濁度上升,只在中性環境下有較低濁度值,偏酸、偏鹼環境下皆有上升情況,PACl控制濁度之效果佳,濁度值明顯較Alum低。
矽酸鹽去除效果以中性環境最佳,水中鋁物種能與矽酸鹽進行電性中和反應,藉沉澱去除,此時PACl單位去除量為0.496 mole SiO2 / mole Al;Alum單位去除量為0.374 mole SiO2 / mole Al。酸性環境下鋁物種正電荷過高,將導致電性逆轉現象,使矽酸鹽去除率下降。鹼性環境下,鋁物種以負電荷之Al(OH)4-為主,無法與矽酸鹽反應,去除效果差。
當有磷酸鹽干擾環境下時,電導度之變化並無太大影響,但濁度值明顯上升,矽酸鹽去除率也大幅下降,主因是磷酸鹽將優先與水中鋁物種反應,消耗可用之鋁物種,最佳去除pH條件為偏鹼性,此時磷酸鹽以HPO42-物種為主,其負電荷高,將降低競爭鋁物種之動力。
在有磷酸鹽干擾之條件下,矽酸鹽去除效果PACl單位去除量為 0.187 mole SiO2 / mole Al,Alum單位去除量為0.210 mole SiO2 / mole Al。而磷酸鹽之最佳去除效果出現在酸性環境下,此時PACl單位去除量為0.857 mole P / mole Al;Alum單位去除量為0.697 mole P / mole Al。
實廠廢水混凝實驗結果發現,與實驗室配製廢水實驗結果相同,在含高量磷酸鹽水中,將大幅降低矽酸鹽去除效果,此時Alum單位去除量為0.047 mole SiO2 / mole Al;PACl單位去除量為0.063 mole SiO2 / mole Al。若水中含少量磷酸鹽時,鋁系混凝劑將有效去除水中矽酸鹽,此時Alum單位去除量為0.700 mole SiO2 / mole Al,PACl單位去除量為0.436 mole SiO2 / mole Al。
混凝去除模式模擬結果發現,在單獨矽酸鹽系統中,以中性pH條件下較為符合;若在有磷酸鹽干擾情況下,以偏鹼性pH環境較為符合該式。另磷酸鹽之去除效果在酸性環境下,該模擬式模擬之結果皆相當符合。
由去除機制之實驗結果發現,鋁系混凝劑去除水中矽酸鹽之主要機制為正電荷鋁物種與帶負電荷之矽酸鹽進行電性中和反應,形成鋁矽酸鹽物種以及負電荷矽酸鹽藉由吸附作用,吸附於已形成之鋁膠羽上,進而沉澱去除。
The focus of this study was to investigate the characteristics of aluminum coagulants (Alum and PACl) coagulation on silica removal. The major key points included SiO2 removal efficiency, pH effect, phosphate effect and removal mechanism discussions. Moreover a simulation formula was build to describe the coagulation and to be used for coagulants dosage control in the wastewater plants. The study results hope to raise value of water recycle.
The experiment results discover that aluminum coagulants can effective removal silica in wastewater. The best removal condition is in neutral pH. At the same time conductivity will rise apparent when use Alum coagulant. Because this coagulant can separation complete, that separation to exit hydrate aluminums and sulfuric acid ions will cause conductivity rise apparent than PACl.
Use Alum coagulant will cause turbidity to rise in water, only in neutral pH conditions have low turbidity, fine acid and fine base conditions turbidity have to rise trend. PACl coagulant can control turbidity effect good, turbidity apparent low than Alum.
The best removal silica condition is in neutral, aluminum can charge neutralization with silica in water then precipitation. PACl a unit removal capacity is 0.496 mole SiO2 / mole Al at this time;Alum a unit removal capacity is 0.374 mole SiO2 / mole Al. In acid condition, aluminum species have slanting high positive charge that to result in charge reversal and silica removal rate to descend. In base condition, the major aluminum species are negative charge Al(OH)4-, unable reaction with silica and removal result low.
In phosphate existence conditions, conductivity is not large effect, but turbidity to rise apparent. Silica removal rates are decreasing apparent, because phosphate can precedence reaction with aluminum species, consumption them. The best silica removal pH condition is fine base environment. At this time the main phosphate species are HPO42-. These species that has high negative charge and reduce aluminum species contention motive force.
In phosphate existence conditions, silica a unit removal rate in PACl coagulant is 0.187 mole SiO2 / mole Al; Alum a unit removal rate is 0.210 mole SiO2 / mole Al. In acid conditions, phosphate removal result is good, in this time PACl a unit removal rate is 0.857 mole P / mole Al; Alum coagulant is 0.697 mole P / mole Al.
A factory wastewater experiment result is the same with a laboratory. High phosphate contents will reduce a great quantity silica removal rate. In this time Alum a unit removal rate is 0.047 mole SiO2 / mole Al; PACl is 0.063 mole SiO2 / mole Al. If wastewater have a little phosphate, aluminum coagulants can effective removal silica in water. In this time Alum a unit removal rate is 0.700 mole SiO2 / mole Al; PACl coagulant is 0.436 mole SiO2 / mole Al.
In alone silica system that coagulation removal mode simulate result is to fit in neutral pH conditions. In phosphate being conditions that coagulant removal mode simulate is fit in base pH environment. In acid conditions phosphate removal effect is fit this coagulation removal mode.
Removal machine experiment result that aluminum coagulants remove silica main machine are positive charge aluminum species charge neutralization with negative charge silica to form aluminumsilica species and negative charge silica adsorb in aluminum gel to precipitate.
目錄
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究內容 3
第二章 文獻回顧 4
2.1 化學混凝 4
2.1.1 化學混凝理論 4
2.1.2 常用化學混凝藥劑 10
2.2 鋁系混凝劑物理化學特性 12
2.2.1 硫酸鋁之特性 16
2.2.2 多元氯化鋁之特性 18
2.2.3 鋁混凝劑之水合型態 23
2.3 二氧化矽物理化學特性 25
2.3.1 自然環境之矽分佈 25
2.3.2 水中矽成分之分佈 29
2.3.3 矽之去除特性 32
2.4 磷酸鹽物理化學特性 37
2.4.1 自然環境之磷分佈 37
2.4.2 水中磷成分之分佈 38
2.4.3 磷之去除特性 39
第三章 研究內容與方法 41
3.1 研究架構 41
3.2 研究方法 42
3.3 研究設備與分析方法 44
3.3.1 研究設備 44
3.3.2 分析方法 45
3.4 實驗材料 48
第四章 結果與討論 49
4.1 矽酸鹽之混凝 49
4.1.1 低濃度矽酸鹽之混凝 49
4.1.2 高濃度矽酸鹽之混凝 59
4.1.3 矽酸鹽混凝去除之模式分析 66
4.1.4 矽酸鹽混凝小結 70
4.2 磷酸鹽對矽酸鹽混凝之影響 71
4.2.1 低濃度磷酸鹽對矽酸鹽混凝之影響 71
4.2.2 高濃度磷酸鹽對矽酸鹽混凝之影響 84
4.2.3 磷酸鹽對矽酸鹽混凝去除之模式分析 95
4.2.4 磷酸鹽對矽酸鹽混凝之影響小結 103
4.3 矽酸鹽混凝去除之機制 105
4.3.1 膠羽吸附 105
4.3.2 電性中和 111
4.3.3 沉澱絆除 112
4.3.4 Ferron比色法 113
4.3.5 矽酸鹽混凝去除之機制小結 115
4.4 含矽酸鹽廢水之混凝 116
4.4.1 竹科廢水處理廠放流水之混凝 116
4.4.2 麥寮冷卻排放水之混凝 129
4.4.3 含矽酸鹽廢水混凝之比較分析 142
4.4.4 含矽酸鹽廢水之混凝小結 142
第五章 結論與建議 143
5.1 結論 143
5.2 建議 145
參考文獻 146
附錄 152
中文文獻
工業技術研究院,”台灣地區廢污水再生利用潛勢整體評估”,
經濟部水利署,(2003)。
吳嘉文,”檸檬酸根對Al13聚合物及鋁物種分化的影響”,碩士論文,
國立台灣大學農業化學研究所,台北,(2000)。
呂嘉敏,”混凝程序去除高科技產業中非晶型二氧化矽之研究”,碩士論文,
朝陽科技大學環境工程與管理系,台中,(2004)。
張俊彥,”積體電路製程及設備技術手冊”中華民國經濟部技術處,
台北,(1996)。
莊順興,李春明,呂嘉敏,”溶解性二氧化矽混凝特性之探討”,自來水會刊,
第二十三卷,第四期,第72-80頁,(2004)。
黃志彬,”利用MF/UF配合鎂鹽前處理移除CMP廢水中矽酸之研究”,
第二屆國科會化工暨環工學門聯合成果應用研討會,台中,(2005)。
楊萬發,”化學混凝處理單元設計與操作”,工業污染防治技術手冊,
經濟部工業局,(1994)。
楊萬發,”廢水處理常用化學藥劑”,工業污染防治技術手冊,
經濟部工業局,(1993)。
樊邦棠,”環境工程化學”,科技圖書股份有限公司,(1998)。

中文文獻
工業技術研究院,”台灣地區廢污水再生利用潛勢整體評估”,
經濟部水利署,(2003)。
吳嘉文,”檸檬酸根對Al13聚合物及鋁物種分化的影響”,碩士論文,
國立台灣大學農業化學研究所,台北,(2000)。
呂嘉敏,”混凝程序去除高科技產業中非晶型二氧化矽之研究”,碩士論文,
朝陽科技大學環境工程與管理系,台中,(2004)。
張俊彥,”積體電路製程及設備技術手冊”中華民國經濟部技術處,
台北,(1996)。
莊順興,李春明,呂嘉敏,”溶解性二氧化矽混凝特性之探討”,自來水會刊,
第二十三卷,第四期,第72-80頁,(2004)。
黃志彬,”利用MF/UF配合鎂鹽前處理移除CMP廢水中矽酸之研究”,
第二屆國科會化工暨環工學門聯合成果應用研討會,台中,(2005)。
楊萬發,”化學混凝處理單元設計與操作”,工業污染防治技術手冊,
經濟部工業局,(1994)。
楊萬發,”廢水處理常用化學藥劑”,工業污染防治技術手冊,
經濟部工業局,(1993)。
樊邦棠,”環境工程化學”,科技圖書股份有限公司,(1998)。



英文文獻
Bao-Yu Gao, Yong-Bao Chu, Qin-Yan Yue, Bing-Jian Wang,
Shu-Guang Wang, “Characterization and coagulation of a polyaluminum
chloride (PAC) coagulant with high Al13 content”, Journal of
Environmental Management, 76,143-147, (2005).
Bruce R. James, Christopher J Clark, and Susan J. Riha,“ An 8-Hydroxyquinoline
Method for Labile Aluminum in Soil Extracts1”, Soil Sci. Soc. Am. J.
47,893-897, (1983).
C.Y. Hu, S.L. Lo, C.M.Li, W.H. Kuan, “Treating chemical mechanical
polishing (CMP) wastewater by electro-coagulation-flotation process
with surfactant”, Journal of Hazardous Materials A120,15-20, (2005).
Chen L. Lai, Sheng H. Lin, “Electrocoagulation of chemical mechanical
polishing (CMP) wastewater from semiconductor fabrication”, Chemical
Engineering Journal, 95, 205-211, (2003).
Chen L. Lai, Sheng H. Lin, “Treatment of chemical mechanical polishing
wastewater by electrocoagulation: system performances and sludge settling
characteristics”, Chemosphere,54,235-242, (2004).
Christopher J. Gabelich, Kenneth P. Ishida, Fredrick W. Gerringer,
Ray Evangelista, Minhaal Kalyan, I.H.”Mel” Suffet, “Control of residual
aluminum from conventional treatment to improve reverse osmosis
performance”, Desalination,190,147-160, (2006).
Christopher J. Gabelich, Tae I. Yun, Bradley M. Coffey, I.H.”Mel” Suffet,
“Effects of aluminum sulfate and ferric chloride coagulant residuals on
polymide membrane performance”, Desalination, 150,15-30, (2002).
Christopher J. Gabelich, Wei R. Chen, Tae I. Yun, Bradley M. Coffey, I.H.
”Mel” Suffet, “The role of dissolved aluminum in silica chemistry for
membrane processes”, Desalination, 180, 307-319, (2005).
Chung-Hsin Wu, Cheng-Fang Lin and Shang-Lien Lo,” Modeling competitive
adsorption of chromate, sulfate and selenate on γ-Al2O3 : comparison
between the triple-layer model and a freundlich-type multi-component
isotherm”, Journal of the Chinese Institute of Environmental Engineering,
Vol.13, No2, pp.87-94, (2003).
Cristiane X. Galhardo, Jorge C. Masini “Spectrophotometric determination
of phosphate and silicate by sequential injection using molybdenum blue
chemistry”, Analytica Chimica Acta 417, 191-200, (2000).
D. McBride Sr. and D. Mukhopadhyay, Ultrapure Water,14(5),24-29, (1997).
David R. Parker and Paul M. Bertsch, “Identification and quantification of the
“Al13” tridecameric polycation using ferron”, Environ. Sci. Technol.,
26,908-914, (1992).
Dongsheng Wang, Wei Sun, Yi Xu, Hongxiao Tang, John Gregory,
“Speciation stability of inorganic polymer flocculant-PACl”, Colloid
and Surfaces A: Physicochem. Eng. Aspects, 243,1-10, (2004).
E.Kusaka, Y. Nakahiro and T. Wakamatsu, “Collectorless liquid-liquid
extraction of silica fines in trivalent metal salts solutions”, Minerals
Engineering,Vol.8, No.7, pp.817-828, (1995).
Gordon C.C. Yang, Tsung-Yin Yang, “Reclamation of high quality water
from treating CMP wastewater by a novel crossflow
electrofiltration/electrodialysis process”, Journal of Membrane Science,
233,151-159, (2004).
Gordon C.C. Yang, Tsung-Yin Yang, Shiou-Huei Tsai, “Crossflow
electro-microfiltration of oxide-CMP wastewater”, Water Research, 37,
785-792, (2003).
Guangjie Lu, Jiuhui Qu and Hongxiao Tang, “The electrochemical production
of highly effective polyaluminum chloride”, Wat. Res., Vol.33, No.3,
pp.807-813, (1999).
Gurusamy Annadurai, S.S. Sung, Duu-Jong Lee, “Simultaneous removal
of turbidity and humic acid from high turbidity stormwater”, Advances in
Environmental Research 8, 713-725, (2004).
H.DE HEK, R. J. STOL, and P.L.DE BRUYN, “Hydrolysis-Precipitation
studies of aluminum (III) solutions”, Journal of Colloid and Interface
Science,Vol.64,No.1,March 15, (1978).
Harder.H.,Geochin.Cosmochim.Acta,29,429, (1965).
Hsin-Liang Huang, H. Paul Wang, “Speciation of nano-copper collected in
molecular sieves from chemical-mechanical planarization wastewater”,
Journal of Electron Spectroscopy and Related Phenomena, 144-147,
307-309, (2005).
Hui-Juan Liu, Jiu-Hui Qu, Cheng-Zhi Hu, Su-Juan Zhang, “Characteristics
of nanosized polyaluminum chloride coagulant prepared by electrolysis
process”, Colloids and Surfaces A: Physicochem. Eng. Aspects ,216,
139-147, (2003).
Ingrida Bremere, Maria Kennedy, Sahar Mhyio, Abdulfattah Jaljuli, Geert-Jan
Witkamp, and Jan Schippers,” Prevention of silica scale in membrane
systems : removal of monomer and polymer silica”, Desalination 132,
89-100, (2000).
J.Gregory and J.Duan, ”The effect of dissolved silica on the action of
hydrolyzing metal coagulants”, Wat.Sci.Tech., Vol.38, No.6, pp.
113-120, (1998).
J.-Z. Zhang, Charles J. Fischer, Peter B. Ortner, “Optimization of
performance and minimization of silicate interference in continuous
flow phosphate analysis”, Talanta,49,293-304, (1990).
Jason C. Rushing, Laurie S. McNeill, Marc Edwards, “Some effects of
aqueous silica on the corrosion of iron”, Water Research, 37,
1080-1090, (2003).
Jean-Philippe Boisvert, Thi Cong To, Abderrazak Berrak, and Carmel
Jolicoeur, ” Phosphate adsorption in flocculation processes of aluminium
sulphate and poly-aluminium-silicate-sulphate”, Wat. Res., Vol.31,
No.8, pp.1939-1946, (1997).
Jeremy Hollingsworth, Reyes Sierra-Alvarez, Michael Zhou, Kimberly L.
Ogden, Jim A. Field, “Anaerobic biodegradability and methanogenic
toxicity of key constituents in copper chemical mechanical planarization
effuents of the semiconductor industry”, Chemosphere, 59, 1219-1228, (2005).
Jinming Duan , John Gregory,” Influence of soluble silica on coagulation by
aluminium sulphate” , Colloids and Surfaces A: Physicochemical and
Engineering Aspects 107 , 309-319, (1996).
John E. Van Benschoten and James K. Edzwald ,”Chemical aspects of
coagulation using aluminum salts-I. Hydrolytic reactions of alum and
polyaluminum chloride ” , Wat.Res,Vol.24, No.12,pp.1519-1526, (1990).
John E., Van Benschoten and James K. Edzwald,” Chemical aspects of
coagulation using aluminum salts-II. Coagulation of fulvic acid using alum
and polyaluminum chloride”, Wat. Res. Vol. 24, pp.1527-1535, (1990).
Kevin McCurdy, Kenneth Carlson, Dean Gregory, “Floc morphology and
cyclic shearing recovery: comparison of alum and polyaluminum chloride
coagulants”, Water Research, 38,486-494, (2004).
Kirsten N. Exall, Gary W. vanLoon, “Effects of raw water conditions on
solution-state aluminum speciation during coagulant dilution”, Water
Research, 37,3341-3350, (2003).
Le Zeng, Xiaomei Li, Jindun Liu, “Adsorptive removal of phosphate from
aqueous solutions using iron oxide trilings”, Water Research, 38,
1318-1326, (2004).
Leah C. Stanley, Kimberly L. Ogden, “Biosorption of copper(II) from chemical
mechanical planarization wastewaters”, Journal of Environmental
Management, 69,289-297, (2003).
Lianfa Song, Gurdev Singh, “Influence of various monovalent cations and
calcium ion on the colloidal fouling potential”, Journal of Colloid and
Interface Science,289,479-487, (2005).
Mahmut Özacar, “Adsorption of phosphate from aqueous solution onto
alunite”, Chemosphere, 51, 321-327, (2003).
Mebrure Badruk, Isao Matsunaga, “Experimental results of silica removal
from simulated solutions of geothermal brine of Kizildere field, Turkey”,
Geothermics, 30,561-570, (2001).
Ming-Shyong Tsai, Wen-Chang Wu, “Aluminum modified colloidal silica
via sodium silicate”, Materials Letters, 58, 1881-1884, (2004).
N. Parthasarathy and J. Buffle,” Study of polymeric aluminium (Ⅲ)
hydroxide solutions for application in waste water treatment. properties
of the polymer and optimal conditions of preparation”, Water Res. Vol.19,
No.1, pp.25-36, (1985).
P. Sahachaiyunta, T. Koo, R. Sheikholeslami,” Effect of several inorganic
species on silica fouling in RO membranes”, Desalination, 144,373-378, (2004).
P. Wilhelm, D. Stephan, “On-line tracking of the coating of nanoscaled silica
with titania nanoparticles via zeta-potential measurements”, Journal of
Colloid and Interface Science,293,88-92, (2006).
Peter F. Weng, “Silica scale inhibition and colloidal silica dispersion for
reverse osmosis systems”, Desalination, 103, 59-67, (1995).
Peter Meyers,”Behavior of Silica in Ion Exchange and Other System”,
Presented at the International Water Conference, held in Pittsburgh,
pp.18-20, (1990).
R. Sheikholeslami and J. Bright, ” Silica and metals removal by pretreatment
to prevent fouling of reverse osmosis membranes”, Desalination 143,
255-267, (2002).
R. Sheikholeslami and S. Tan, Desalination, 126,267-280, (1999).
R. Sheikholeslami, S. Zhou, “Performance of RO membranes in silica bearing
waters”, Desalination, 32,337-344, (2000).
Robert Y. Ning, ”Discussion of silica speciation, fouling, control and
maximum reduction”, Desalination 151,67-73, (2002).
Robert Y. Ning, Thomas L. Troyer, Roger S. Tominello, “Chemical control
of colloidal fouling of reverse osmosis systems”, Desalination, 172,1-6, (2005).
S. H. Chuang, T. C. Chang, C. F. Ouyang and J. M. Leu,” Colloidal silica
removal in coagulation processes for wastewater reuse in a high-tech
industrial park”, Wastewater Reclamation and Reuse for Sustainability
(WRRS2005), Jeju, Korea, (2005).
Sandor Barany, Martien A. Cohen Stuart, Gerard J. Fleer, “Coagulation
rate of silica dispersions investigated by single-particle optical sizing”,
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 106,
213-221, (1996).
Sheng H. Lin, Chung R. Yang, “Chemical and physical treatments of
chemical mechanical polishing wastewater from semiconductor
fabrication”, Journal of Hazardous Materials B108, 103-109, (2004).
Steve Kvecj, Marc Edwards, “Solubility controls on aluminum in drinking
water at relatively low and high pH”, Water Research,36,4356-4368, (2002).
Takushi Yokoyama, Akira Ueda, Koichi Kato, Katsumi Mogi and Shorin
Matsuo, “A study of the Alumina-Silica gel adsorbent for the removal
of silicic acid from geothermal water: increase in adsorption capacity of
the adsorbent due to formation of amorphous aluminosilicate by adsorption
of silicic acid”, Journal of Colloid and Interface Science, 252,1-5, (2002).
Thomas W. Swaddle, ”Silicate complexes of aluminum(III) in aqueous
systems”, Coordination Chemistry Reviews, 219-221,665-686, (2001).
Violante, A. and Huang, P. M., “Influence of inorganic and organic ligands
on the formation of aluminum hydroxides and oxyhydroxides”, Clays
Clay Miner., 33,181, (1985).
Walter Den, Chihpin Huang, “Electrocoagulation for removal of silica
nano-particles from chemical-mechanical-planarization wastewater”,
Colloids and Surfaces A: Physicochem. Eng. Aspects, 254,81-89, (2005).
Wen Po Cheng, Fung Hwa Chi and Ruey Fang Yu, “Effect of phosphate
on removal of humic substances by aluminum sulfate coagulant”, Journal
of Colloid and Interface Science, 272,153-157, (2004).
Y.H.Song, Z.K.Luan and H.X.Tang, “Preparation and characterization
of polyaluminium silicate chloride coagulant”, Environmental Technology,
Vol.24, pp 319-327, (2003).
Yi Xu, Dongsheng Wang, Hong Liu, Lu Yiqiang, Hongxiao Tang,
“Optimization of separation and purification of Al13”, Colloids and Surfaces
A: Physicochem. Eng. Aspects, 231,1-9, (2003).
Yoomin Ahn, Joon-Yong Yoon, Chang-Wook Baek, Yong-Kweon Kim,
“Chemical mechanical polishing by colloidal silica-based slurry for
micro-scratch reduction”, Wear, 257, 785-789, (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔