跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/02/27 22:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖元隆
研究生(外文):Yuan-Lung Liao
論文名稱:掩埋場管柱厭氧生物反應槽灰燼添加垃圾共同掩埋穩定性研究
論文名稱(外文):Biostabilization assessment of MSW co-disposed with MSW incinerator bottom ash and fly ash in landfill bioreactor
指導教授:羅煌木
指導教授(外文):Huang-Mu Lo
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:114
中文關鍵詞:掩埋場厭氧消化飛灰底灰重金屬
外文關鍵詞:anaerobic digestionheavy metalslandfillMSW incinerator bottom ashMSW incinerator fly ash
相關次數:
  • 被引用被引用:2
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
台灣因地狹人稠,隨著工商業發展及國民生活水準與消費的提升,所產生的廢棄物也隨之增加。因土地不易取得,我國垃圾處理已由掩埋方式逐漸採以焚化為主之中長期垃圾處理方向。但垃圾焚化後灰燼仍約佔原體積之百分之十五。焚化後灰燼處理仍將成為主要環保問題之一。底灰目前利用方式有填土、土壤改良、級配利用與覆土掩埋,其中覆土替代掩埋仍佔很重要一部份但其掩埋機制仍不是很清楚。飛灰目前仍以固化為主,但本研究仍與底灰一起探討其作為掩埋覆土之可行性。為模擬實際掩埋狀況 (垃圾與覆土比4:1),使用6個1 m高直徑20 cm之管柱其工作容積為32 L,其中2個管柱為對照組實驗,管內只含垃圾基質與厭氧污泥。另4管柱與對照組相同,但另添加各2種比例之底灰(100 g/L、200 g/L)與飛灰(10 g/L、20 g/L)以進行比對試驗。將這6個管柱厭氧生物反應槽置於35℃之溫控箱中,以觀察垃圾分解之情形。每天取出200 mL滲出液,其中100 mL返送,而另100 mL過濾後,分析其pH、導電度、鹽度及每週以ICP、IC儀器分析金屬離子、氯鹽、硫酸鹽等。實驗結果顯示,除反應初始前兩週外,六反應槽之pH皆維持在6.5到7.5左右,有利用厭氧消化之進行。底灰添加組100 g/L與飛灰添加組10 g/L與20 g/L有促進氣體產率之潛勢,但產氣累積量以飛灰20 g/L最高。金屬與其它微量元素溶出濃度對反應槽未造成抑制作用,但相對地有促進氣體產率之潛勢。由本實驗結果得知適當比例灰燼添加作為垃圾覆土掩埋,有利於掩埋場垃圾之快速分解、進氣體產率增加與生物穩定性之促進。
Due to the economical development, municipal solid waste (MSW) has increased to a greater amount as the increase of higher consumption and living standard in Taiwan. MSW treatment has evolved to incineration from landfill due to the difficulty of finding appropriate landfill site in Taiwan. However, residues such as bottom ash and fly ash will still remain 15 % of its original MSW volume. Therefore, residues have become another important issue and need to treat them to prevent secondary pollution in Taiwan. Bottom ash has been utilized as backfill, soil amendment, aggregate and landfill cover. Among them, landfill cover has played a major part for the utilization. However, the baseline data of landfill cover practice is still not fully understood. Thus, using bottom ash as landfill cover needs a deep theoretical and experimental investigation for the understanding of landfill mechanisms. For convenience, fly ash was tested and compared as well. For a short term simulation, six landfill bioreactors with 1 m high and 20 cm wide with working volume of 32 L were used to conduct the experiment. Among them, two was used as control bioreactors containing only the mixture of MSW and seeded sludge. The remained four ones were employed as tested bioreactors the same packing as control ones but with the designated bottom ash and fly ash added ratios of 100 and 200 g l-1 and 10 and 20 g l-1 respectively. These six bioreactors were maintained in a homeostatic oven of 35℃ suitable for the anaerobic digestion. For performance assessment of bioreactors, leachates with 100 mL were sampled for pH, conductivity, salinity, Cl-1, SO4-2 (IC) and metals analyses (ICP-OES). Another 100 mL leachates were recirculated. From the results, it showed that pHs were maintained between 6.5 and 7.5 throught the bioreactor operation with the exception of the first two weeks. 100 g l-1 bottom ash added and 10 and 20 g l-1 fly ash added bioreactors were found to enhance the gas production rate with the highest gas accumulation by 20 g l-1 fly ash added bioreactor. Released alkali metals, heavy metals and trace metals such as Ca, Mg, Ni, Co, Mo etc have been found to have potential beneficial rather than detrimental effects on MSW digestion. Thus, it indicated that proper MSW incinerator bottom and fly ash addition on MSW could increase the MSW decomposition and gas production rate and therefore increased the landfill MSW biostabilization.
總目錄
摘要 I
Abstract III
誌謝 V
總目錄 VI
表目錄 VIII
圖目錄 IX
第一章 前言 1
第二章 文獻回顧 5
2.1垃圾處理、掩埋場及焚化爐 5
2.1.1垃圾處理 5
2.1.2掩埋場 6
2.1.3焚化爐 7
2.2灰燼處理、利用及比較 7
2.3都市垃圾及焚化爐灰燼 10
2.3.1都市垃圾特性組成 10
2.3.1.2垃圾之化學組成 12
2.3.2 焚化爐灰燼 14
2.3.3焚化爐灰燼之物理特性 17
2.3.3.1底灰物理特性 17
2.3.3.2飛灰物理特性 18
2.3.4焚化爐灰燼之化學特性 19
2.3.4.1底灰化學特性 19
2.3.4.2飛灰化學特性 24
2.4垃圾厭氧消化 27
2.4.1厭氧消化程序 27
2.4.2厭氧消化影響因子 28
2.4.3厭氧消化處理固體廢棄物 34
2.4.3.1植種污泥 34
2.4.3.2厭氧消化反應槽與反應槽混合條件 35
2.4.3.3厭氧微生物與揮發酸 36
2.4.3.4硫酸鹽還原菌對甲烷菌的影響 37
2.5產氣 39
2.5.1厭氧消化產氣 39
2.5.2掩埋場產氣 40
第三章 實驗材料與方法 43
3.1實驗設計 43
3.2實驗材料 46
3.2.1焚化爐灰燼 46
3.2.2植種厭氧污泥 46
3.2.3垃圾基質 47
3.3實驗方法 49
3.3.1篩分析 49
3.3.2總量分析(王水消化) 50
3.3.3基本參數分析 50
3.3.4總固體物(TS)及揮發性固體物(VS)分析 51
3.3.5 COD分析 52
3.3.6鹼度與揮發酸分析 53
3.3.7氯鹽硫酸鹽分析 54
3.3.8金屬含量分析(ICP/OES) 54
第四章 結果與討論 56
4.1灰燼特性分析 56
4.1.1篩分析 56
4.1.2實驗材料分析 57
4.2 灰燼添加厭氧生物反應槽參數 58
4.2.1產氣量 58
4.2.2 pH值 61
4.2.3導電度 63
4.2.4鹽度 65
4.2.5 溶氧 67
4.2.6 COD 69
4.2.7 總鹼度 71
4.2.8 揮發酸 73
4.2.9總固體物(TS) 75
4.2.10揮發性固體物(VS) 77
4.2.11 氯鹽 79
4.2.12 硫酸鹽 81
4.2.13 鹼性金屬 83
4.2.14 重金屬 86
4.2.15 其他微量金屬 93
第五章 結論 105
參考文獻 107
表目錄
表2-1 各種焚化灰渣處理方式優缺點比較 8
表2-2 灰燼處理技術 9
表2-3 歷年垃圾採樣分析結果-按物理組成(乾基) 11
表2-4 歷年垃圾採樣分析結果-按化學分析(濕基) 13
表2-5 都市固體廢棄物焚化爐灰燼金屬含量的比較 16
表2-6 底灰的基本物化特性 20
表2-7 不同粒徑底灰之化學特性 23
表2-8 焚化飛灰化學元素及含量 25
表2-9 XRF分析未經處理飛灰及SCE分析殘渣 26
表2-10 各國焚化飛灰成份分析 27
表2-11 造成50%氣體產量抑制的金屬濃度組合 33
表2-12 掩埋場氣體典型的成分 42
表3-1 ICP/OES各項操作參數 55
表4-1 底灰、飛灰不同粒徑之重量百分比分佈 56
表4-2 實驗材料總量分析(王水消化)金屬含量 57
圖目錄
圖2-1 有機基質之厭氧消化程序示意圖 28
圖2-2 一般垃圾場處理過程階段特性 42
圖3-1 實驗流程圖 44
圖3-2 厭氧生物反應管之示意圖 45
圖3-3 實驗模廠圖 45
圖3-4 垃圾基質之物理組成、準備及進料與出料示意圖 48
圖3-5 篩分析儀器 49
圖4-1 飛灰不同比例添加厭氧消化反應槽每日產氣量趨勢圖 59
圖4-2 飛灰不同比例添加厭氧消化反應槽累積產氣量趨勢圖 59
圖4-3 底灰不同比例添加厭氧消化反應槽每日產氣量趨勢圖 60
圖4-4 底灰不同比例添加厭氧消化反應槽累積產氣量趨勢圖 60
圖4-5 飛灰不同比例添加厭氧消化反應槽pH趨勢圖 62
圖4-6 底灰不同比例添加厭氧消化反應槽pH趨勢圖 62
圖4-7 飛灰不同比例添加厭氧消化反應槽導電度趨勢圖 64
圖4-8 底灰不同比例添加厭氧消化反應槽導電度趨勢圖 64
圖4-9 飛灰不同比例添加厭氧消化反應槽鹽度趨勢圖 66
圖4-10 底灰不同比例添加厭氧消化反應槽鹽度趨勢圖 66
圖4-11 飛灰不同比例添加厭氧消化反應槽溶氧趨勢圖 68
圖4-12 底灰不同比例添加厭氧消化反應槽溶氧趨勢圖 68
圖4-13 飛灰不同比例添加厭氧消化反應槽COD趨勢圖 70
圖4-14 底灰不同比例添加厭氧消化反應槽COD趨勢圖 70
圖4-15 飛灰不同比例添加厭氧消化反應槽總鹼度趨勢圖 72
圖4-16 底灰不同比例添加厭氧消化反應槽總鹼度趨勢圖 72
圖4-17 飛灰不同比例添加厭氧消化反應槽揮發酸趨勢圖 74
圖4-18 底灰不同比例添加厭氧消化反應槽揮發酸趨勢圖 74
圖4-19 飛灰不同比例添加厭氧消化反應槽TS趨勢圖 76
圖4-20 底灰不同比例添加厭氧消化反應槽TS趨勢圖 76
圖4-21 飛灰不同比例添加厭氧消化反應槽VS趨勢圖 78
圖4-22 底灰不同比例添加厭氧消化反應槽VS趨勢圖 78
圖4-23 飛灰不同比例添加厭氧消化反應槽氯鹽含量趨勢圖 80
圖4-24 底灰不同比例添加厭氧消化反應槽氯鹽含量趨勢圖 80
圖4-25 飛灰不同比例添加厭氧消化反應槽硫酸鹽含量趨勢圖 82
圖4-26 底灰不同比例添加厭氧消化反應槽硫酸鹽含量趨勢圖 82
圖4-27 灰燼不同比例添加厭氧消化反應槽Ca含量趨勢圖 84
圖4-28 灰燼不同比例添加厭氧消化反應槽K含量趨勢圖 84
圖4-29 灰燼不同比例添加厭氧消化反應槽Mg含量趨勢圖 85
圖4-30 灰燼不同比例添加厭氧消化反應槽Na含量趨勢圖 85
圖4-31 Cd添加每日產氣量及溶出趨勢圖 87
圖4-32 Cr添加每日產氣量及溶出趨勢圖 87
圖4-33 Cu添加每日產氣量及溶出趨勢圖 88
圖4-34 Pb添加每日產氣量及溶出趨勢圖 88
圖4-35 Zn添加每日產氣量及溶出趨勢圖 89
圖4-36 Ni添加每日產氣量及溶出趨勢圖 89
圖4-37 灰燼不同比例添加厭氧消化反應槽Cd含量趨勢圖 90
圖4-38 灰燼不同比例添加厭氧消化反應槽Cr含量趨勢圖 90
圖4-39 灰燼不同比例添加厭氧消化反應槽Cu含量趨勢圖 91
圖4-40 灰燼不同比例添加厭氧消化反應槽Ni含量趨勢圖 91
圖4-41 灰燼不同比例添加厭氧消化反應槽Pb含量趨勢圖 92
圖4-42 灰燼不同比例添加厭氧消化反應槽Zn含量趨勢圖 92
圖4-43 灰燼不同比例添加厭氧消化反應槽Ag含量趨勢圖 94
圖4-44 灰燼不同比例添加厭氧消化反應槽Al含量趨勢圖 94
圖4-45 灰燼不同比例添加厭氧消化反應槽B含量趨勢圖 95
圖4-46 灰燼不同比例添加厭氧消化反應槽Ba含量趨勢圖 95
圖4-47 灰燼不同比例添加厭氧消化反應槽Co含量趨勢圖 96
圖4-48 灰燼不同比例添加厭氧消化反應槽Fe含量趨勢圖 96
圖4-49 灰燼不同比例添加厭氧消化反應槽Hf含量趨勢圖 97
圖4-50 灰燼不同比例添加厭氧消化反應槽In含量趨勢圖 97
圖4-51 灰燼不同比例添加厭氧消化反應槽Mn含量趨勢圖 98
圖4-52 灰燼不同比例添加厭氧消化反應槽Mo含量趨勢圖 98
圖4-53 灰燼不同比例添加厭氧消化反應槽P含量趨勢圖 99
圖4-54 灰燼不同比例添加厭氧消化反應槽S含量趨勢圖 99
圖4-55 灰燼不同比例添加厭氧消化反應槽Sb含量趨勢圖 100
圖4-56 灰燼不同比例添加厭氧消化反應槽Si含量趨勢圖 100
圖4-57 灰燼不同比例添加厭氧消化反應槽Sn含量趨勢圖 101
圖4-58 灰燼不同比例添加厭氧消化反應槽Ta含量趨勢圖 101
圖4-59 灰燼不同比例添加厭氧消化反應槽Ti含量趨勢圖 102
圖4-60 灰燼不同比例添加厭氧消化反應槽Tl含量趨勢圖 102
圖4-61 灰燼不同比例添加厭氧消化反應槽W含量趨勢圖 103
圖4-62 灰燼不同比例添加厭氧消化反應槽V含量趨勢圖 103
圖4-63 灰燼不同比例添加厭氧消化反應槽Zr含量趨勢圖 104
Ahring, B.K., “Status on Science and Application of Thermophilic Anaerobic Digestion,” Water Sci. Technol. 30, pp.241-249(1994) .
Ahring, B.K., Sandberg, M., and Angelidaki, I., “Volatile Fatty Acids as Indicators of Process Imbalance in Anaerobic Digestors,” Appl. Microbiol. Biotechnol. 43, pp.559-565(1995).
Alkan, U., Anderson, G.K., and Ince, O, “Toxicity of Trivalent Chromium in the Anaerobic Digestion Process,” Water Research 30, pp.731 -741(1996).
Barlaz, M. A.; Ham, R. K. and D. M. Schaefer, “Mass-balance analysis of anaerobically decomposed refuse,” Journal of Environmental Engineering, pp.1088-1102(1989).
Barredo, M.S., and Evison, L.M., “Effect of Propionate Toxicity on Methanogen-Enriched Sludge, Methanobrevibacter Smithii, and Methanospirillum Hungatei at Different Ph Values,” Appl. Environ. Microbiol. 57, pp.1764-1769(1991).
Cecchi, F., Pavan, P., and Mata-Alvarez, J., “Fast Digester Start-up under Mesophilic Conditions Using Thermophilic Inoculum.,” Water Sci. Technol. 25, pp.391-398(1992).
Chin-Ming Huang , Wan-Fa Yang , Hwong-Wen Ma , Yii-Ren Song, “The potential of recycling and reusing municipal solid waste
incinerator ash in Taiwan,” Waste Management 26, pp. 979–987(2006)
Chris C.Y. Chan. and Donald W. Kirk., “Behaviour of metals under the
conditions of roasting MSW incinerator fly ash with chlorinating
agents,” Journal of Hazardous Materials B 64, pp. 75-89(1999).
Christensen, T. H., R. Cossu, and R. Stegmamn, “Sanitary
landfilling process,” Technology and environmental impact, 1st
Ed. ,Academic press, London, p. 29-49(1989).
Dichtl, I. N., “Thermophilic and mesophilic (two-stage) anaerobic digestion,” J. CIWEN 11, pp.98-104(1997).
Clapp et al., “Municipal solid waste composition and the behavior of metals in incinerator ashes,” Environmental Progress 7(1), 22-30(1988)
Eleazer, W. E., Odle, W. S., Wang, Y. S. and Barlaz, M. A., “Biodegrad
ability of municipal solid waste components in laboratory-scale landfills,” Environmental Science and Technology 31(3), pp. 911-917. (1997).
Fish, C., “Enhance of the anaerobic digestion of municipal solid wastethrough nutrient supplementation,” PhD thesis, University of Southampton. (1999).
Fukuzaki, S., Nishio, N., Shobayashi, M., and Nagai, S., “Inhibition of the Fermentation of Propionate to Methane by Hydrogen, Acetate, and Propionate,” Appl. Environ. Microbiol. 56, pp.719-723 (1990).
Griffin, M.E., McMahon, K.D., Mackie, R.I., and Raskin, L., “Methanogenic Population Dynamics During Start-up of Anaerobic Digesters Treating Municipal Solid Waste and Biosolids,” Biotechnol. and Bioeng. 57, pp.342-355(1998).
Hobson, P.N., and Wheatley, A.D., “Anaerobic Digestion, Modern Theory and Practice,” Elsevier Science Publishers LTD, Essex, U.K (1993).
IAWG,. “Municipal Solid Waste Incinerator Residues. Studies in
Environmental Sciences,” vol. 67. Elsevier, Amsterdam, The
Netherlands. (1997)
Isa, Z., Grusenmeyer, S., and Verstraete, W., “Sulfate Reduction Relative to Methane Production in High-Rate Anaerobic Digestion: Microbiological Aspects,” Appl. Environ. Microbiol. 51, pp.580-587 (1986).
Kayhanian M. and S. Hardy,“The impact of four design parameters on the performance of a high-solids anaerobic digestion of municipal solid waste for fuel gas production,” Environmental Technology 15, pp.557-567 (1994).
Lin, C.Y., “Effect of Heavy Metals on Acidogenesis in Anaerobic Digestion,” Water Research 27, pp.147-152(1993).
Lo, Huang-Mu., “Metals behaviors of MSWI bottom ash co-digested Anaerobically with MSW,” Resources, Conservation & Recycling Volume: 43, Issue: 3, pp.263-280 (2005).
Lytwynyshyn, G. R., Zimmerman, R. E., Flynn, N. W., Wingender, R.,
and Olivieri, V., “Landfill methane recovery part Π:gas characterization. Technical Report , Argonne national laboratory,
Argonne Illinois,”, ANL-CNSV-TM-118.(1982).
NCHRP, Waste and Recycled Materials Use in the Transportation
Industry-NCHRP 4-21, information Database User’s Manual.(2000)
Mancuso, C.A., Franzmann, P.D., Burton, H.R., and Nichols, P.D., “Microbial Community Structure and Biomass Estimates of a Methanogenic Antarctic Lake Ecosystem as Determined by Phospholipid Analysis,” Microbial Ecology 19, pp.73-95 (1990).
McCarty, P.L., and Mosey, F.E., “Modelling of Anaerobic Digestion Processes (a Discussion of Concepts),” Water Sci. Technol. 24, pp.17-33 (1991).
McMahon, K.D., Stroot, P.G., Mackie, R.I., and Raskin, L., “Anaerobic Codigestion of Municipal Solid Waste and Biosolids under Various Mixing Conditions—Ii: Microbial Population Dynamics,” Water Research 35, pp.1817-1827(2001).
McMahon, K.D., Zheng, D., Stams, A.J.M., Mackie, R.I., and Raskin, L., “Microbial Population Dynamics During Start-up and Overload Conditions of Anaerobic Digesters Treating Municipal Solid Waste and Sewage Sludge,” Biotechnol. and Bioeng. 87, pp.823 - 834 (2004).
Mosey, F.E., “Assessment of the Maximum Concentration of Heavy Metals in Crude Sewage Which Will Not Inhibit the Anaerobic Digestion of Sludge,” Wat. Pollut. Control, pp.10-20 (1976).
Mosey, F.E., and Hughes, D.A., “The Toxicity of Heavy Metal Ions to Anaerobic Digestion,” Wat. Pollut. Control, pp.18-39(1975).
Nanninga, H.J., and Gottschal, J.C., “Anaerobic Purification of Waste Water from a Potato Starch-Producing Factory,” Water Research 20, pp.97-104(1986).
Ontiveros, J.T. and D. S. Kosson, “Physical Properties and Chemical
Species Distributions Within Municipal Waste Combuster
Ashes,” Environmental Progress, Vol.8, Issue: 3,pp 200-210(1989).
Parkin, G. F. and W. F. Owen, “Fundamentals of anaerobic digestion of wastewater sludges,” Journal of Environmental Engineering, pp.867-920 (1986).
Parkin, G.F., Lynch, N.A., Kuo, W.-C., Keuren, L.V., and Bhattacharya, S.K., “Interaction between Sulfate Reducers and Methanogens Fed Acetate and Propionate,” Res. J. Water Pollut. Control Fed. 62, pp.780-788(1990).
Raskin, L., Rittmann, B., and Stahl, D., “Competition and Coexistence of Sulfate-Reducing and Methanogenic Populations in Anaerobic Biofilms,” Appl. Environ. Microbiol. 62, pp.3847-3857 (1996).
Rittmann, B.E., and McCarty, P.L, Environmental Biotechnology : Principles and Applications. New York: McGraw-Hill (2001).
Sarada, R., and Joseph, R., “Characterization and Enumeration of Microorganisms Associated with Anaerobic Digestion of Tomato-Processing Waste.,” Bioresource Technology 49, pp.261-265(1994).
Sawell, S.E., “Heavy metal leachability from solid waste incinerator ashes.,” Waste Management and Research 6, pp. 227-238 (1988).
Smith, D.W., “Ecological Actions of Sulfate-Reducing Bacteria,” New York: Springer Verlag(1993).
Speece, R. E., “Environmental reguirements for anaerobic digestion of biomass,” Advance in Solar Energy 2, pp.51-123 (1985).
Stroot, P.G., McMahon, K.D., Mackie, R.I., and Raskin, L., “Anaerobic Codigestion of Municipal Solid Waste and Biosolids under Various Mixing Conditions—I. Digester Performance.,” Water Research 35, pp.1804-1816 (2001).
Tchobanoglous, G., H. Theisen, and S. Vigil, “Integrated Solid Waste Management Engineering Principles and Management Issues,” McGrow-Hill, (1993).
TEPA, The Research on the Utilization of MSWI residues (II).
EPA-93-U1H1-02-101, Taipei, Taiwan.(2004)
Theis, T. L.and K.H. Gardner., “Environmental assessment of ash disposal,” Crit. Rev. Environ Control20(1), pp.21-42(1990).
Thiele, J.H., and Zeikus, J.G., “Control of Interspecies Electron Flow During Anaerobic Digestion: Significance of Fromate Transfer Versus Hydrogen Transfer During Syntrophic Methanogensis in Flocs,” Appl. Environ. Microbiol. 54, pp.20-29 (1988).
Thiele, J.H., Chartrain, M., and Zeikus, J.G., “Control of Interspecies Electron Flow During Anaerobic Digestion: Role of Floc Formation in Syntrophic Methanogenesis,” Appl. Environ. Microbiol. 54, pp.10-19 (1988).
Ward, D.M., and Winfrey, M.R., “Interactions between Methanogenic and Sulfate-Reducing Bacteria in Sediments,” New York: Plenum Press(1985).
Widdel, F., “Microbiology and Ecology of Sulfate- and Sulfur-Reducing Bacteria,” New York: John Wiley & Sons(1988).
Wu, W.M., Jain, M.K., Conway de Macario, E., Thiele, J.H., and Zeikus, J.G., “Microbial Composition and Characterization of Prevalent Methanogens and Acetogens Isolated from Syntrophic Methanogenic Granules,” Appl. Environ. Microbiol. 58, pp.282-290(1992).
Xiao Wan, Wei Wang, Tunmin Ye, Yuwen Guo, Xingbao Gao, “A study on the chemical and mineralogical characterization of MSWI fly ash
using a sequential extraction procedure,” Journal of Hazardous Materials B134 pp.197–201(2006)
Yoda, M., Kitagawa, M., and Miyaji, Y., “Long Term Competition between Sulfate-Reducing and Methane-Producing Bacteria for Acetate in Anaerobic Biofilm,”. Water Research 21, pp.1547-1556(1987).
Zinder, S.H., “Physiological Ecology of Methanogens. New York,” Chapman & Hall (1993).
行政院環境保護署網站 http://www.epa.gov.tw/main/index.asp
吳慶龍,「焚化底灰粗粒徑替代道路基層材料之可行性探討」,碩士論文,淡江大學水資源及環境工程學系,台北(2000)
李甘露,「添加有機污泥對掩埋場覆土甲烷氧化行為之研究」,碩士論文,國立中興大學環境工程學系,台中(2001)。
李釗、江少鋒、郭文田,「都市垃圾焚化灰渣做為混凝土細骨材之可行性研究」,一般廢棄物焚化灰渣資源化技術與實務研討會,第91-112頁,(1996)。
柴浣蘭,「都市垃圾焚化灰渣掩埋特性及滲出水預測模式之研究」,碩士論文,淡江大學水資源及環境工程學系,台北(2001)
張正源,「焚化灰渣物理化學特性之探討與研究」,博士論文,國立清華大學原子科學研究所,新竹(2006)
張祖恩,台灣地區都市垃圾焚化灰渣物化組成即溶出特性探討,一
般廢棄物焚化灰渣資源化技術與實務研討會,(1996)。
許添財,「連續流回分式活性污泥系統好氧相曝氣控制策略之研究:線上即時量測溶氧轉換率與需氧量方法之建立」,碩士論文,國立中央大學環境工程研究所,桃園(2002)。
傅祖營,「灰渣衛生掩埋場對環境影響之探討-以台中市衛生掩埋場為例」,碩士論文,朝陽科技大學環境工程與管理系,台中(2006)。
楊易霖,「有機廢棄物之厭氧消化-前處理及溫度之影響」,碩士論文,國立屏東科技大學環境工程與科學系,屏東(2002)。
楊博清,「添加灰渣於掩埋場覆土中甲烷氧化作用之研究」,碩士論文,國立中興大學環境工程學系,臺中(2002)。
楊朝全,「運用倒傳遞類神經網路預測添加灰燼於可分解垃圾氣體產
量評估研究」,碩士論文,朝陽科技大學環境工程與管理系,台中(2006)。
羅煌木,「焚化爐底灰物化特性及掩埋場植生復育研究」,博士論文,國立中興大學水土保持研究所,臺中(2002)。
蘇銘顥,「模擬厭氧消化反應槽添加焚化爐底灰/飛灰於市鎮固體廢棄物之菌群結構分析」,碩士論文,國立中興大學環境工程學系,台中(2005)。
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊