跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/17 13:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳信富
研究生(外文):Hsin-Fu Chen
論文名稱:室內聲場之餘響時間與聲源特性對空間聲音定位之影響
論文名稱(外文):Effects of Reverberation and Sound Source to Auditory Localization in an Indoor Sound Field
指導教授:陳炯堯陳炯堯引用關係
指導教授(外文):Chiung-Yao Chen
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:建築及都市設計研究所
學門:建築及都市規劃學門
學類:建築學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:83
中文關鍵詞:餘響時間空間感知音樂樣本自函數有效遲延時間
外文關鍵詞:effective delay of autocorrelation functionreverberation timemusic samplespatial perception
相關次數:
  • 被引用被引用:2
  • 點閱點閱:706
  • 評分評分:
  • 下載下載:137
  • 收藏至我的研究室書目清單書目收藏:0
有關餘響時間在聲場中對於聲源方向性判斷影響之調查,M. Morimoto(1989)曾以餘響聲能 (RT60 = 0.3、0.9秒)與初期反射聲能 (delay time = 80、160ms)相互提示方法來探討對於聽覺之空間感知判斷之影響。他發現此影響中,餘響聲能可視同早期反射音聲能來探討。但就音樂樣本選擇上僅限於莫札特第41交響樂第4樂章作為實驗之對象。作者認為在聲源樣本改變下,人耳對於餘響的空間感將會改變(陳炯堯、許晉益,2005)。因此,本研究選擇以不同的音樂樣本進行實驗分析,探討聲源之空間感知是否因樂曲之改變而有明顯之差異。根據Y. Ando(1980)所敘述之聲場設計理論,決定理想之餘響時間長短在於樂曲本身自函數之有效遲延時間(effective delay of autocorrelation function, e)。因此,本研究選擇以實驗室模擬聲場方式來進行,聲源樣本選擇以樣本A(Royal Pavane by Gibbon, τe = 127 ms) ,樣本B(Sinfonietta, Opus 48; Ⅲ movement; Allegro con brio by Arnold, τe = 35 ms),樣本C(speech, female, τe = 23ms)三個樣本,餘響時間設定上為短時間(0.3秒)、中時間(0.9秒)及長時間(2.0秒)分別以亂數將聲源樣本與餘響時間進行配對。在判答上,將實驗者回答之方位角度視為常態配分方式計分,再以變異數分析(ANOVA)進行分析與檢討。結果顯示,聲源樣本(Motif A)判斷準確度最高,聲源樣本(speech)最低(p<0.01),其主要原因由於聲源 τe 的不同,即樂曲構造之不同,造成判斷上有顯著差異。因此,證實了樂曲改變,將影響人耳對聲源空間感之影響;其次,在餘響時間的影響方面顯示,並未直接得到在空間感之差異性(p>0.05)。
As far as the investigation on the influence of reverberation time has on the discretion of sound source direction is concerned, M. Morimoto (1989) had long applied the method of bilateral cues of both reverberation energy (RT60 = 0.3, 0.9 sec.) and first reflection energy (delay time = 80, 160ms) in his exploration on its impact on the discretion of auditory spatial perception. In his findings, he had found among these influences that reverberation energy may be treated as the first reflection energy in his choosing of experimental subject, provided it was limited to Wolfgang Amadeus Mozart’s Symphony No. 41, Movement IV. M. Morimoto (1989) reasoned that human’s auditory spatial perception of reverberation changes with the changing of speech samples. (Chen & Xu , 2005 ) As such, by choosing different music samples to conduct experimental analysis, this study intends to explore whether spatial perception of sound source varies significantly with changing music motifs. According to the sound field design theory described by Yoichi Ando (1980), the determining factor of an ideal reverberation time length lies in the effective delay of autocorrelation function ( e). With this in mind, the researcher chose to conduct his experiment with simulated sound field in the lab where three speech samples: Sample A (Royal Pavane by Gibbon, e = 127 ms), Sample B (Sinfonietta, Opus 48; Ⅲ movement; Allegro con brio by Arnold, e = 35 ms) and Sample C (speech, female, e = 23ms) were adopted. Reverberation time was set at three time lengths: short (0.3 sec.), medium (0.9 sec.) and long (2.0 sec.) and then matched with the aforesaid three time lengths by using random numbers respectively. Directional angels responded by experimenters were scored according to the normal distribution, and ANOVA was then applied to conduct analysis and reviewing. Result showed that Motif A hit the highest accuracy level, while speech hit the lowest (p<0.01). The primary cause for this was the different e, that is, different motif compositions had resulted in the significant difference of discretion, verifying that the change of motifs will have an influence on human’s auditory spatial perception of sound source. Furthermore, in the respect of reverberation time, no difference of spatial perception influence was gained directly form here (p>0.05).
中文摘要.................................................Ⅰ
英文摘要.................................................Ⅱ
謝誌.................................................... Ⅳ
目錄.....................................................Ⅴ
表目錄...................................................Ⅶ
圖目錄...................................................Ⅷ

第一章 緒論…………………………………………….………………1
 第一節 研究動機……………………………………….……………2
 第二節 研究目的…………………………………………………….3
 第三節 研究內容與範圍……………………………………….……4
 第四節 研究流程…………………………………………………….5

第二章 相關文獻回顧.......................................6
 第一節 音響空間(聲場)基礎概念………………...............6
第二節 聲場基礎理論……....................................................7
 第三節 聲源定位之相關文獻…………...............................................12
 第四節 本研究之重要參考文獻……….…….................13

第三章 實驗規劃.........................................16
 第一節 實驗內容……………….............….............16
 第二節 實驗參數設定.......................................................19
 第三節 主觀心理實驗方法.......................................................24

第四章 實驗結果分析.......................................................28
第一節 聽覺感知分析…………...............................................28
第二節 聽覺定位分析…………...............................................38

第五章 結論與建議.......................................45
第一節 結論........…………..............................45
第二節 後續發展與建議…………............................45

參考文獻.................................................46
中文部分.......................................................46
英文部分.......................................................47

附錄一 各受測者於不同餘響時間與聲源樣本之統計分析……..…50
附錄二 台灣地區華語單音節檢測音表........................67
附錄三 受測者聽覺試驗結果統計............................69
附錄四 實驗用揚聲器………….….…………..................81
參考文獻
一、中文部分
1. 方世榮,2001,《統計學導論》,華泰文化事業股份有限公司,台北。
2. 車世光、王炳麟、秦佑國,1991,《建築聲環境》,淑馨出版社。
3. 林俊亨、陳喆、陳柏霖、彭筱茹,2003,《統計學─STATISTICS》,普林斯頓國際有限公司。
4. 孟慶茂、常建華,2000,《心理實驗學》,心理出版社,台北。
5. 柿崎佑一等,1997,《心理學實驗與測驗之基礎─實習篇》,五南圖書出版有限公司,台北。
6. 陳炯堯、許晉益,2005,中國南管樂器音像寬廣特性之研究,《第十八屆音響學會論文集》,pp.137-144。
7. 陳炯堯,1998,室內音響物理參數之心理標度值與腦波之自相
關函數間的關聯性,《第十一屆建築研究成果論文及上冊》,中華
民國建築學會,台北,pp.95-100。
8. 陳啟中,2000,《建築物理概論》,詹氏出版社,台北。
9. 童甲春,1997,《統計學》,前程企業管理有限公司,台北。
10. 楊治良主編,1997,《實驗心理學》,東華出版社,台北。
11. 楊博民, 1997,《心理實驗綱要》,五南圖書出版有限公司,台北。
12. 管中閔,2000,《統計學觀念與方法》,華泰文化事業股份有限公司,台北。
13. 黃弘昌,1995,演藝廳樂音之主觀評估,《碩士論文》,國立台灣科技大學工程技術研究所,台北。
14. 黃春展,1997,以模擬音場為對象之室內音響性能主觀評估,《碩士論文》,國立台灣科技大學工程技術研究所,台北。
15. 賴榮平、林憲德、周家鵬,1991,《建築物理環境》,六合出版社,台北。
二、英文部分
1.Aoki. M., Okamoto. M., Aoki. S., Matsui. H., Sakurai. T. and Kaneda. Y. , “Sound source segregation based on estimating incident angle of each frequency component of input signals acquired by multiple microphones,” Acoust. Sci. & Tech., 22, pp.149–157(2001).
2.Ando.Y.,“Calculation of subjective preference at each seat in a concert hall,”J.Acoust. Soc.Am 74,pp.873-887(1983).
3.Ando.Y.,“Concert Hall Acoustics, ”Berlin Heidelberg, New York(1985)
4. Bilsen F.and Brinkman.F.,“On the perception of spaciousness with artificial head, ”11th Int. Congr.Acoust, pp.135-138 (Paris)(1983).
5.Blauert. J. and Lindemann. W., “Auditory spaciousness: Some further psychoacoustic analyses,”J.Acoust. Soc. Am 80,pp.533-542(1986).
6.Beranek. L.,“Concert and Opera Halls-How They Sound Acoustical Society of America, Woodbury(1996).
7.Barron. M. and Marshall. A. H.,“Spatial impression due to early lateral reflection in concert halls: The deviation of a physical measure, ”J. Sound Vib.77, 211-232(1981).
8.Chau. W.,“Vinaural and Monaural Elevtion Estimate for Sound Source,”Technical Report No.12, NSF Grant No.IRI-9402246, Dept. of Elec.Engr.,San Jose State Univ(1995).
9.Duda. R. O.,“Estimating Azimuth and Elevation from the Interaural Intensity Different,”Technical Report NO.4.NSF Grant NO.IRI-9214223, Dept. of Elec. Engr., San Jose State Univ(1993).
10.Ferguson, B. G., “Time-delay estimation techniques applied to the acoustic detection of jet aircraft transits,” J. Acoust. Soc. Am.,106, pp.255–264 (1999).
11. Jeress. L. A.,“A place theory of sound localization,”J. Comp.Physiol., 41,pp.35-39(1947)
12. Morimoto. M. and Iida. K., “A practical evaluation method of auditory source width in concert halls, ”J. Acoust. Soc. Jpn.(E)16, 2(1995).
13. Morimoto. M. and Posselt. C., “Contribution of reverberation to auditory spaciousness in concert halls,” J. Acoust. Soc. Jpn.(E)10,
2(1989).
14.Morimoto. M. and Maekawa. Z.,“Auditory spaciousness and envelopment, Proc. 13th Int. Congr. Acoustics, ”pp.215–218 (1989).
15. Mason. R., Bookes. T. and Rumsey. F., “The effecy of various source signal properties on measurement of the interaural cross-correlation coefficient,” Acoust. Sci.& Tech .26.2(2005).
16.Okuno.H. and Nakadai. K., “Are a pair of ears sufficient for robot audition?,” J. Acoust. Soc. Jpn. (J), 58, 205–210(2002).
17. Rayleigh. L., “On our perception of sound direction,” Philos. Mag.,13, pp.214–232 (1907).
18. Schroeder. M. R., Gottlob. D., and Siebrasse. K .F ., “Comparative study of European concert halls: correlation of subjective preference with geometric and acoustic parameters, ”J. Acoust. Soc. Am 56,1195-1201(1974).
19. Stevens. S.S.and Newman.E. B.“The localization of actctual sources of sound, ”J. Psychol. Am.,48, pp.297-306(1936).
20. T. Urayama, M.Y.Fu, Lee, J.Q. and D.B.Tong,“A Real-Time Monaural to Binaural Head-Shadow Filter,”EE199 Project Report, Dept. of Elec.Engr.,San Jose State Univ(1990).
21. Wayman, C.,“ACorrelation-Based Location Algorithm for Multiple Sound Source,”M.S. Project Report, Dept. of Comp.Engr.,San Jose State Univ(1990).
22. Ynangawa H., Y. Yamasaki and T. Itow, “Effect of transient signal length on crossorrelation functions in a room,” J. Asoust. Soc. Am., 84, pp.1728-1733(1988).
23. Ynangawa.H.,“Transient interaural vross correlation function in room”Music&Concert Hall Acoustics, Conference Proceedings From MCHA, pp.251-259(1995).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top