跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/03 01:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李韋宏
研究生(外文):Wei-hung Li
論文名稱:台灣美元即、遠期匯市效率、價量關係與交易行為之研究-GARCH、FIGARCH與HYGARCH模型之應用
論文名稱(外文):A Study on U.S. Dollar Spot and Forward Exchange Market Efficiency, Price-Volume Relationship and Trading Behavior in Taiwan: An Application of GARCH, FIGARCH and HYGARCH Models
指導教授:劉祥熹劉祥熹引用關係李見發李見發引用關係
指導教授(外文):Hsiang-hsi LiuJian-Fa Li
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:財務金融系碩士班
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:141
中文關鍵詞:效率性價量關係遠期買賣價差交易行為長期記憶
外文關鍵詞:Market efficiencyLong MemoryBid-Asked SpreadsPrice-Volume RelationshipTrading Behavior
相關次數:
  • 被引用被引用:8
  • 點閱點閱:920
  • 評分評分:
  • 下載下載:313
  • 收藏至我的研究室書目清單書目收藏:2
本研究旨在探討台灣美元即、遠期匯市之效率性、價量關係及交易行為,採用新台幣兌美元之即、三十天期遠期匯率、遠期買賣價及外匯成交量。研究期間為1998年5月28日至2005年10月31日。根據所蒐集之理論基礎及相關文獻,引起本研究:(1)納入VECM with DCC GJR HYGARCH模型,描述即、遠期匯市之動態關聯性,並解釋匯市非效率性;(2)引用VAR模式,以檢定Clark (1973)之混合分配假說與Copeland (1976)之逐次到達理論;(3)研究波動性與預期、非預期成交量及價差之關聯性,以利於本研究探討即、遠期匯率報酬變異及遠期買賣價差之決定因素。

根據本研究之實證分析,其結果包含(1) VECM with DCC GJR HYGARCH模型結果顯示遠期匯價較即期匯價反應新資訊速度快,且長期記憶下之波動持續性相對即期匯市小,隱含該市場價格發現能力較佳;(2)價量關係結果顯示即、遠期匯價與成交量較能支持混合分配假說。而遠期買賣價差與成交量互為獨立關係,無法支持混合分配或資訊逐次到達理論;(3)預期波動性、遠期買賣價差、預期及非預期成交量變動能夠擴大未來即、遠期匯市風險性,理由是預期持有部位風險,因而反映遠期買賣價差,帶動波動性與成交量變動;(4)未來即期匯率風險及非預期市場衝擊是影響遠期買賣價差之重要因素,隱含交易員為補償未來匯率風險增加持有部位損失,因而擴大該價差作為補償,其支持價差理論之持有成本效果。且該價差易受國際政治與重大特殊事件影響,產生較大變異性。
The aim of this study is to U.S. dollar spot and forward exchange market efficiency, price-volume patterns and trading behavior in Taiwan. This thesis employs NTD/USD spot and 1-month forward exchange rate, forward bid and ask, trading volumes from May 28 1998 to October 31 2005. Based on the basic theories and references, it attracts my thesis to discover: (1) to establish VECM with DCC GJR HYGARCH model, it describes dynamic relationship between spot and forward exchange markets and market efficiency; (2)to employ VAR model, testing for the mixture of distribution hypothesis and sequential information arrivals; (3)to investigate connections between volatility, expected and unexpected trading volumes and bid-asked spreads, it further examine determinants of the squared return on spot and forward exchange rate and forward bid-asked spreads.

The empirical result of this research have found: (1) the result of VECM with DCC GJR HYGARCH model exhibits that forward exchange rate is responses to new information more quickly than spot exchange rate, and volatility persistence relatively weak, implying that the ability of price discovery in forward market is better than spot market; (2) because the price of spot and forward exchange rate, trading volumes are current interrelationship, it supports the mixture of distribution hypothesis. However, the evidence of the forward bid-asked spreads and trading volumes are mutually independent, it indicates the mixture of distribution hypothesis or the sequential information arrivals not to be made; (3) the expected volatility, forward bid-asked spreads, the changes of expected and unexpected trading volumes all enlarge exchange rate risk in spot and forward markets. Because the dealers expect the holding positions risk of spot and forward assets, it reflects forward bid-asked spreads accompany with volatility and trading volumes; (4) the determinants of the impacts on forward bid-asked spreads are the future spot exchange rate risk and uncertain market shocks, it implies that the dealers expand the spreads as to compensate exposed risk loss, it supports the theory inventory holding cost. Moreover, the forward bid-asked spreads are easily affected by the international politics and/or particular event which is arose from the strong variance.
第壹章 緒論.........................................................................................1
第一節 研究動機與背景...............................................................................1
第二節 研究目的...........................................................................................7
第三節 研究方法與步驟...............................................................................8
第四節 研究對象、範圍與資料來源..........................................................10
第五節 論文架構.........................................................................................11
第貳章 理論基礎與文獻回顧...........................................................12
第一節 理論基礎.........................................................................................12
第二節 文獻回顧.........................................................................................22
第三節 本章綜論.........................................................................................34
第參章 實證計量方法.......................................................................36
第一節 單根檢定.........................................................................................36
第二節 共整合檢定.....................................................................................39
第三節 誤差修正模型與因果分析方法.....................................................44
第四節 Long memory GARCH模型與相關檢定方法..............................47
第五節 模型預測績效評估之方法.............................................................68
第肆章 實證結果與分析..................................................................70
第一節 資料描述.........................................................................................70
第二節 單根檢定與共整合分析之結果.....................................................76
第三節 向量誤差修正模型估計、檢定與長期記憶之鑑定......................83
第四節 即、遠期匯市動態關聯性之實證結果與分析..............................89
第五節 即、遠匯價格、遠期價差及成交量關聯性之實證結果分析.......103
第六節 即、遠期匯率報酬變異性決定因素之實證結果分析................114
第七節 遠期價差決定因素之實證結果分析...........................................119
第八節 本章小結.......................................................................................123
第伍章 結論與建議.........................................................................126
第一節 結論...............................................................................................126
第二節 建議與未來研究方向...................................................................129
參考文獻...........................................................................................133

表目錄

表4-1 即期與遠期匯率之基本統計量.........................................................72
表4-2 即期與遠期匯率報酬、遠期價差與成交量之基本統計量..............73
表4-3 即期與遠期匯率與其變動率之數列各期AIC值.............................77
表4-4 遠期匯率、成交量與成交量變動之數列各期AIC值....................78
表4-5 所有相關變數之ADF結果...............................................................79
表4-6 所有變數之KPSS結果......................................................................80
表4-7 即期與遠期匯率共整合檢定之最適落後期.....................................81
表4-8 Johansen MLE檢定結果....................................................................83
表4-9 共整合方程式.....................................................................................83
表4-10 誤差序列相關性檢定結果.................................................................85
表4-11 ARCH LM檢定結果..........................................................................86
表4-12 不對稱檢定結果.................................................................................86
表4-13 VECM模型誤差之長期記憶檢定結果.............................................87
表4-14 模式1:模型參數估計結果................................................................95
表4-15 模式1:模型診斷與檢定...................................................................96
表4-16 模式2:模型參數估計結果..............................................................97
表4-17 模式2:模型診斷與檢定..................................................................98
表4-18 模式3:參數估計結果......................................................................99
表4-19 模式3:模型診斷與檢定................................................................. 100
表4-20 即、遠期匯價、遠期價差及成交量變動之ADF檢定結果.............105
表4-21 即期匯率與成交量變動關係之估計結果.......................................109
表4-22 遠期匯率與成交量變動關係之估計結果.......................................110
表4-23 遠期價差與成交量變動關係之估計結果.......................................112
表4-24 三種估計模式標準化誤差項之Q與ARCH檢定..........................113
表4-25 預期與非預期成交量變動之估計結果...........................................115
表4-26 估計模型之誤差項Q與ARCH檢定結果.......................................115
表4-27 匯率報酬平方與預期、非預期成交量變動之ADF檢定結果.....116
表4-28 即、遠期外匯市場匯率報酬波動性之模型估計結果...................118
表4-29 估計模型之誤差項Q與ARCH檢定結果.....................................118
表4-30 遠期匯率價差之決定因素模型估計結果.......................................122
表4-31 估計模式之標準化誤差項Q與ARCH檢定..................................122





圖目錄

圖1-1 研究步驟之流程.................................................................................10
圖4-1 即期匯率.............................................................................................74
圖4-2 遠期匯率.............................................................................................74
圖4-3 即期匯率之自然對數.........................................................................74
圖4-4 遠期匯率之自然對數.........................................................................74
圖4-5 即期匯率變動率.................................................................................75
圖4-6 遠期匯率變動率.................................................................................75
圖4-7 遠期匯率價差百分比.........................................................................75
圖4-8 外匯成交量(美元).........................................................................75
圖4-9 外匯成交量之自然對數.....................................................................75
圖4-10 外匯成交量變動.................................................................................75
圖4-11 即期匯率報酬率誤差數列之ACF.....................................................88
圖4-12 遠期匯率報酬率誤差數列之ACF.....................................................88
圖4-13 即期匯率報酬率誤差平方數列之ACF.............................................89
圖4-14 遠期匯率報酬率誤差平方數列之ACF.............................................89
一、中文部分
1.白麗真,「即期與遠期匯率之長期均衡及短期動態關係」,國立台灣大學財務金融系碩士論文,1996年6月。
2.沈中華(1995),「檢定外匯市場效率性-三向量自我迴歸模型」,中國財務學刊,第3卷,第2期,頁21-47。
3.吳致寜與張萬清(1996),「外匯市場效率性與共積檢定」,基層金融,第32卷,頁21-40。
4.林金龍、吳中書與劉嘉興(1993),「台灣美元遠期即期匯率關係之探討-共整合分析之應用」,中國統計學報,第31卷,第2期,頁271-287。
5.林卓民、 邱哲修與林秀美(2004),「即期匯率與遠期匯率之因果關係檢定」,貨幣市場,第8卷,第5期,頁23-34。
6.邱建良、吳佩珊與邱哲修(2004),「亞洲外匯市場行為之探討–不對稱門檻GARCH模型之應用」,台灣管理學刊,第4卷,第2期,頁187-202。
7.高櫻芬與彭雅玲(2003),「外匯交易市場之市場微結構」,台灣金融財務季刊,第4卷,第2期,103-115。
8.滑明曙(2002,4月),「外匯交易員的買賣報價價差行為之研究」,2002年財務金融學術研討會,國立中興大學國際會議廳。
9.廖四郎、徐守德與王銘杰(1997),「台灣美元遠期外匯市場風險溢酬之研究」,財務金融學刊,第5卷,第2期,頁27-43。
10.蔡書川,「遠期外匯買賣價差波動對匯率價格發現功能之研究」,國立台北大學企業管理系碩士論文,2004年6月。

二、英文部分
1.Andersen, T. G. (1996), “Return Volatility and Trading Volume: an Information Flow Interpretation of Stochastic Volatility,” Journal of Finance, Vol.51, No.1, pp. 169-204.
2.Bauwens, L., S. Laurent and J. V. K. Rombouts. (2006), “Multivariate GARCH Models: A Survey,” Journal of Applied Econometrics, vol. 21, No.1, pp 79-109.
3.Baillie, R. T. and T. Bollerslev (1990), “A Multivariate Generalized ARCH Approach to Modelling Risk Premia in Forward Foreign Exchange Markets,” Journal of International Money and Finance, Vol.9, No.3, 309-324.
4.Baillie, R.T., T. Bollerslev and H. O. Mikkelsen (1996), “Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, Vol.74, No. 1, pp. 3-30.
5.Baillie, R.T. and P.C. McMahon (1989), The Foreign Exchange Market: Theory and Econometric Evidence, Cambridge University Press, U.K.
6.Bessembinder, H. (1994), “Bid-ask Spread in the Interbank Foreign Exchange Markets,” Journal of Financial Economics, Vol.35, No.3, pp. 317-348.
7.Bollerslev, T. (1990), “Modelling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized ARCH Model,” The Review of Economics and Statistics, Vol. 72, No.3, pp. 498-505.
8.Bollerslev, T. and M. Melvin (1994), “Bid-Ask Spreads and Volatility in the Foreign Exchange Market: An Empirical Analysis,” Journal of International Economics, Vol. 36, No.3-4, pp.355-372.
9.Brunetti C. and C. L. Gilbert (2000), “Bivariate FIGARCH and Fractional Cointegration,” Journal of Empirical Finance, Vol. 7, pp.509-530.
10.Callen, J. L., M. W. Luke Chen and C. C. Y. Kwan (1989), Spot and Forward Exchange Rates: A Causality Analysis,” Journal of Business Finance and Accounting, Vol. 16, No. 1, pp.105-118.
11.Copeland T.E. (1976), “A Model of Asset Trading Under the Assumption of Sequential Information Arrival,” Journal of Finance, Vol.31, No.4, pp. 1149-1168.
12.Chiang, T. C. (1988), “The Forward Rate as a Predictor of the Future Spot Rate: A Stochastic Coefficient Approach,” Journal of Money, Credit and Banking, Vol. 20, No.2, pp.212-232.
13.Choudhry, T. (1999), “Re-examining Forward Market Efficiency: Evidence from Fractional and Harris-Inder Cointegration Tests,” International Review of Economics and Finance, Vol. 8, pp. 433-453.
14.Choi, K. and E. Zivot (2005), “Long Memory and Structural Changes in the Forward Discount: An Empirical Investigation,” Working Paper.
15.Davidson, J. (2000), Econometric Theory, Oxford, Blackwell Publishers, U. K.
16.Davidson J. (2004), “Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model,” Journal of Business and Economic Statistics, Vol. 22, No.1, pp. 16-29.
17.Davidson, J. and P. Sibbertsen (2005), “Generating Schemes for Long Memory Processes: Regimes, Aggregation and Linearity,” Journal of Econometrics, Vol. 128, pp. 253-282.
18.Delong, J. B., L. H. Summer and R. J. Waldman (1990), “Positive Feedback Investment Strategies and Destabilizing Rational Speculation,” Jounal of Finance, Vol. 45, No.2, pp.379-395.
19.Demsetz, H. (1968), “Why Regulate Utilities,” Journal of Law and Economics, Vol. 11, pp. 55-65.
20.Ding Z. and C. W. J. Granger (1996), “Modeling Volatility Persistence of Speculative Returns: A New Approach,” Journal of Econometrics, Vol. 73, No.1, pp.185-186.
21.Dolado, J. J. and H. L¨utkepohl (1996), “Making Wald Tests Work for Cointegrated VAR systems,” Econometric Reviews, Vol.15, pp. 369-386.
22.Engle, C. (1996), “The Forward Discount Anomaly and the Risk Premium: A Survey of Recent Evidence,” Journal of Empirical Finance, Vol. 3, pp. 123-192.

23.Engle, R. F. (1982), “Autogressive Conditional Heteroscedasticity with Estimation of the Variance U.K. Inflation,” Econometrica, Vol. 50, pp. 987-1008
24.Engle, R. F. and T. Bollerslev (1986), “Modelling the Persistence of Conditional Variance,” Econometric Reviews, Vol. 5, pp. 1-50.
25.Engle, R. F. and C. W. J. Granger (1987), “Cointegration and Error Correction Representation, Estimation and Test,” Econometrica, Vol. 55, No. 2, pp. 251-276.
26.Engle, R. F. (2002), “Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models,” Journal of Business and Economic Statistics, Vol. 20, No.3, pp. 339-350.
27.Engle, R. F. and K. F. Kroner (1995), “Multivariate Simultaneous GARCH,” Econometric Theory, Vol. 11, pp. 122-150.
28.Engle, R. F. and V. K. Na (1993), “Measuring and Testing the Impact of News on Volatility,” Journal of Finance, Vol. 48, No.5, pp. 1749-1778.
29.Eps, T.W., and M.L. Eps (1976), “The Stochastic Dependence of Security Price Changes and Transactions Volumes: Implications for the Mixture-of-Distributions Hypothesis,” Econometrica, Vol. 44, pp. 305-321.
30.Fama, E. F. (1970), “Efficient Capital Markets: a Review of Theory and Empirical work,” Journal of Finance, Vol. 25, pp.383-417.
31.Fama, E. F. (1984), “Forward and Spot Exchange Rates,” Journal of Monetary Economics, Vol. 14, pp. 319-338.
32.Frenkel, J. A. (1981), “Flexible Exchange Rate, Price, and the Role of News: Lesson from the 1970s,” Journal of Political Economy, Vol. 89, pp. 655-705.
33.Galati, G. (2000), “Trading Volume, Volatility and Spreads in Foreign Exchange Markets: Evidence from Emerging Market Countries, BIS Working Paper.
34.Giraitis, L., P. Kokoszka, R. Leipus and G. Teyssiere (2003), “Rescaled Variance and Related Tests for Long Memory in Volatility and Levels,” Journal of Econometrics, Vol. 112, No. 2, pp. 265-294.
35.Glassman, D. (1987), “Exchange Rate Risk and Transcation Costs: Evidence from Bid-Asked Spreads,” Journal of International Money and Finance, Vol. 6, pp. 479-490.
36.Granger, C. W. J. (1969), “Investigating Causal Relations by Econometric Models and Cross-Spectral Methods,” Econometrica, Vol. 37, No.3, pp. 424-438.
37.Granger C. W. J. and P. Newbold (1974), “Spurious Regressions in Econometrics,” Journal of Econometrics, Vol. 26, pp.1045-1066.
38.Granger, C. W. J. and R. Joyeux (1980), “An Introduction to Long-Memory Time Series Models and Fractional Differencing,” Journal of Time Series Analysis, Vol. 1, pp. 15-29.
39.Granger, C. W. J. (1981), “Some Property of Time Series Data and Their Use in Econometric Model Specification,” Jounal of Econometrics, Vol. 16, pp.121-130.
40.Granger, C.W. J. (1986) “Development in the Study of Cointegrated Economic Variables,” Oxford Bulletin of Economics and Statistics, Vol. 48, pp. 213-228.
41.Hansen, L. P. and R. J. Hodrick (1980), “Forward Exchange Rates as Optimal Predictors of Future Spot Rates: An Econometric Analysis,” Journal of Political Economy, Vol. 88, pp. 829-853.
42.Hausman, J. A. (1978), “Specification Tests in Econometrics,” Econometrica, Vol. 46, No. 6, pp.1251-1271.
43.Hsieh, D. A. (1984), “Test of Rational Expectational and No Premium in Forward Exchange Markets,” Journal of International Economics, Vol. 17, pp. 173-184.
44.Hakkio, C. S. and M. Rush (1989), “Market Efficiency and Cointegration: An Application to Sterling and Deutschemark Exchange Market,” Journal of International Money and Finance, Vol. 88, pp. 829-853.
45.Hartmann, P. (1999), “Trading Volume and Transaction Cost in the Foreign Exchange Market: Evidence from Daily Dollar-Yen Spot Data,” Journal of Banking and Finance, Vol. 23, pp. 801-824.
46.Ho, K. Y. and A. K. C. Tsui (2004, June). “Long Memory and Asymmetry in Exchange Rate Volatility: A Multivariate GARCH Approach with Time-Varying Correlations,” Forecasting Financial Markets: Advances for Exchange Rates, Interest Rates, and Asset Management, Paris, France
47.Hosking, J. R. M. (1981), “Fractional Differencing,” Biometrika, Vol. 68, pp. 165-176.
48.Jennings, R. H., T. S. Laura and J. C. Fellingham (1981), “An Equilibrium Model of Asset Trading with Sequential Information Arrival,” Journal of Finance, Vol. 36, No.1, pp. 143-161.
49.Johansen, S. (1988), “Statistical Analysis of Cointegration Vectors,” Journal of Economic Dynamics and Control, Vol. 12, pp. 231-254.
50.Johansen, S. and K. Juselius (1990), “Maximun Likelihood Estimation and Inference on Cointegration with Application to the Demand for Money,” Oxford Bulletin of Economics and Statistics, Vol. 52, No.2, pp. 169-209.
51.Johansen, S. (1991), “Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Regression Models,” Econometrics, Vol. 59, pp. 1551-1580.
52.Kyriacou, K. and L. Sarno (1999), “The Temporal Relationship between Derivatives Trading and Spot Market Volatility in the U.K.: Empirical Analysis and Monte Carlo Evidence,” Journal of Futures Markets, Vol. 19, No.3, pp. 245-270.
53.Kwiatkowski, D., P. Phillips, P. Schmidt, and Y. Shin (1992), “Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root,” Journal of Econometrics, Vol. 54, pp. 159-178.
54.Lee, T. H. (1994), “Spread and Volatility in Spot and Forward Exchange Rates,” Journal of International Money and Finance, Vol. 13, No.3, pp. 375-383.
55.Ljung, G. and G. Box (1978), “On a Measure of Lack of Fit in Time Series Models,” Biometrica, Vol. 65, pp 297-303.
56.Lo, A.W. (1991), “Long-Term Memory in Stock Market Price,” Econometrica, Vol. 59, No. 5, pp. 1279-1313.
57.Lobo, B. J. and D. Tufte, (1998), “Exchange Rate Volatility:Does Politics Matter?” Journal of Macroeconomics, Vol. 20, pp. 351-365.
58.Luu, J. C. and M. Martens (2003), “Testing the Mixture of Distributions Hypothesis using Realized Volatility,” Journal of Futures Markets, Vol. 23, No.7, 661-679.
59.Mende, A. (2006), “09/11 on the USD/EUR Foreign Exchange Market,” Applied Financial Economics, Vol. 16, No.3, pp. 213-222.
60.Moulines, E. and P. Soulier (1999), “Broad Band Log-Periodogram Estimation of Time Series with Long-Range Dependence,” Annals of Statistics, 27(4), 1415-1439.
61.Newey, W.K. and K. D. West (1987), “A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix,” Econometrica, Vol. 55, pp. 703-708.
62.Pafka, S. and L. Matyas (2002, August), “Multivariate Diagonal FIGARCH: Specification, Estimation and Application to Modelling Exchange Rates Volatility,” Proceedings of the ESEM Conference, Venice.
63.Said, S. E. and D. A. Dickey (1984), “Testing for Unit Roots in Autoregressive Moving Average Models of Unknown Order,” Biometrica, Vol. 71, pp. 559-607.
64.Sim, C. A. (1980), “Macroeconomics and Reality,” Econometrics, Vol. 48, pp. 1-48.
65.Tauchen, G. and M. Pitts (1983), “The Price Variability-Volume Relationship on Speculative Markets,” Econometrica, Vol.51, No.2, pp. 485-506.
66.Walker, A. (2002, 2.28), “The Microstructure of the Jamaican Foreign Exchange Market: Volumes, Volatility and Spreads,” The Bank of Jamaica research publications, Financial Markets.
67.White, H. (1982), “Maximum Likelihood Estimation of Misspecified Models,” Econometrica, Vol. 50, pp. 1-25.
68.Wang, P. and P. Wang (1999), “Foreign Exchange Market Volatility in Southeast Asia,” Asia-Pacific Financial Markets, Vol. 6, No.3, pp. 235-252.
69.Wang, P. and P. Wang (2001), “Equilibrium adjustment, Basis Risk and Risk Transmission in Spot and Forward Foreign Exchange Markets,” Applied Financial Economics, Vol. 11, pp. 127-136.
70.Zivot, E. (2000), “Cointegration and Forward and Spot Exchange Rates Regressions,” Journal of International Money and Finance, Vol. 19, pp. 785-812.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 鄭明德。2001。〈論立法院黨團的法律意義與地位〉。《律師雜誌》263 :90-98。
2. 劉鳳珍。1997。〈國會研究評析〉。《東吳政治學報》7:191-206。
3. 廖達琪 。1996。〈從衝突管理觀點--談立法院議事及黨團運作改進的方向 〉。《理論與政策》11,1 :138-153。
4. 郭秋慶。1994a。〈德國聯邦眾院黨團的運作及其功能〉。《法政學報》2:127-143
5. 盛杏湲。2001a。〈立法委員正式與非正式立法參與之研究:以第三屆立法院為例〉。《問題與研究》40,5:81-103。
6. 楊婉瑩。2003。〈一致政府到分立政府的政黨合作與衝突:以第四屆立法院為例〉。《東吳政治學報》16:47-93。
7. 楊婉瑩。2002。〈立法院委員會的決策角色:以第三屆立法院為例〉。《問題與研究》41,4:83-114。
8. 楊婉瑩、陳采葳。2004。〈國會改革風潮下黨團協商制度之轉變與評估〉。《東吳政治學報》19 :111-150。
9. 黃秀端。2002a。〈國會的效能升級—談兩波立法院之改革〉。《新世紀智庫論壇》17:42-56。
10. 黃秀端。2001。〈立法院委員會制度糾謬-立法效率與品質為何不好〉。《當代》117:86-96。
11. 盛杏湲。1997。〈立法委員的立法參與:概念、本質與測量〉。《問題與研究》36,3:1-25。
12. 周萬來。1999。〈立法院議事運作概述〉。《立法院院聞》27,3:10-32。
13. 王業立。2002。〈國會中的政黨角色與黨團運作〉。《月旦法學》86:82-96。
14. 王業立。2001b。〈國會中的政黨與黨團協商--民主政治的基石還是障礙?〉。《當代》53,171:78-85。
15. 5.林卓民、 邱哲修與林秀美(2004),「即期匯率與遠期匯率之因果關係檢定」,貨幣市場,第8卷,第5期,頁23-34。
 
1. 以植基於GARCH、EGARCH及GJR-GARCH之PSO方法建構匯率預測模型
2. 次級房貸危機及金融海嘯下美國股市與公債期現貨市場動態連動性之研究-VEC DCC GJR-GARCH 模型與VEC Copula GJR-GARCH-skewed-t 模型之應用
3. 實質有效匯率之非線性模型研究-新台幣、人民幣及日圓模型之建立
4. 應用灰色關聯分析及類神經網路建構一金融商品價差走勢預測模型
5. 美國、日本、台灣、南韓股價報酬率波動持續性中結構性改變、成交量與GARCH效果比較及該四國股票市場動態關聯性之研究─ICSS運算法與多變量VEC-GJRGARCH-M模型之應用─
6. 匯率對台灣內需概念股股價影響之分析---GARCH 模型之應用
7. 分析師推薦個股投資績效之研究
8. 未預期匯率變動對企業價值之影響–台灣上市公司實證研究
9. 貝氏方法選取最佳模式---GARCH或門檻GARCH模式
10. 貴金屬市場的波動傳遞性與波動外溢性之研究─GARCH與FIGARCH模型
11. 台灣股票現貨對應股票指數期貨的避險比例與避險績效之研究-OLS, Rolling Regression, Bivariate CC GARCH and Bivariate DCC GARCH模型
12. 次級房貸與金融海嘯下的臺、日、韓與中國股市連動性之研究:VEC GJR DCC-GARCH 與 Copula GJR-GARCH模型之應用
13. 原物料商品價格指數的波動分析-GARCH模型與MRS_GARCH狀態轉換模型比較
14. 台灣商業銀行經營績效與成本風險之研究
15. 整合遺傳演算法與模糊理論以建構財富管理決策模型之研究