|
[1] ISO/IEC ISO/IEC 15444-1 “Information Technology JPEG 2000 Image Coding System,” 2000. [2] S. G. Mallat, “Multi-frequency channel decompositions of images and wavelet models,” IEEE Trans. on Acous. Speech and Proc. ASSP-37, 12, pp. 2091-2110, 1989. [3] G. Beylkin, R. Coifman, and V. Rokhlin, “Wavelets in numerical analysis,” New York: Jones and Bartlett, 1992. [4] A. N. Akansu and R. A. Haddad, Multi-resolution signal decomposition: transforms, subbands and wavelets, ACADEMIC PRESS, second edition, 1992. [5] M. A. Stoksik, R. G. Lane, D. T. Nguyen, “Accurate synthesis of fractional Brownian motion using wavelets,” Electronic Letters, vol.30, no.5, pp.383-384, Mar 1994. [6] D. Taubman, “High performance scalable image compression with EBCOT,” IEEE Trans. on Image Processing, vol.9, pp.1158-1170, July 2000. [7] I. Sodagar, H. J. Lee, P. Hatrack, and Y. Q. Zhang, “Scalable wavelet coding for synthetic/natural hybrid images,” IEEE Trans. on Circuits and Systems for Video Technology, vol.9, pp.244-254, Mar 1999. [8] R. Kronland-Martinet, J. Morlet, and A. Grossman, “Analysis of sound patterns through wavelet transform,” Int’l J. Pattern Recognition and Artificial Intelligence, vol.1, no.2, pp.273-302, 1987. [9] K. K. Parhi and T. Nishitani, “VLSI architectures for discrete wavelet transforms,” IEEE Transaction on VLSI System, vol.1, no.6, pp.191–202, 1993. [10] C. Chakrabarti, M. Vishwanath, “Efficient realizations of the discrete and continuous wavelet transforms: from single chip implementations to mappings on SIMD array computers,” IEEE Trans. on Signal Processing, vol.43, no.3, pp.759-771, 1995. [11] S.G. Mallat, “A theory for multi-resolution signal decomposition: the wavelet representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, no.7, pp.674-693, 1989. [12] A. S. Lewis and G. Knowles, “VLSI architecture for 2-D Daubechies wavelet transform without multipliers,” Electronics Letter, vol.27, pp.171–173, Jan. 1991. [13] C. Chakrabarti and M. Vishwanath, “Architectures for wavelet transforms: A survey,” J. VLSI Signal Processing, vol.14, pp.171–192, 1996. [14] J. C. Limqueco and M. A. Bayoumi, “A VLSI architecture for separable 2-D discrete wavelet transforms,” J. VLSI Signal Processing, vol.18, pp.125–140, 1998. [15] P. Wu and L. Chen, “An efficient architecture for two-dimensional discrete wavelet transform,” IEEE Transactions on Circuits and Systems for Video Technology, vol.11, no.4, pp.536-545, 2001. [16] F. Marino, “Two fast architectures for the direct 2-D discrete wavelet transform-Signal Processing,” IEEE Transactions on Signal Processing, vol.49, no.6, pp.1248-1259, 2001. [17] F. Marino, “Efficient high-speed/low-power pipelined architecture for the direct 2-D discrete wavelet transform,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.47, no.12, pp.1476-1491, 2000. [18] T. Park and S. Jung, “High speed lattice based VLSI architecture of 2D discrete wavelet transform for real-time video signal processing,” Consumer Electronics, IEEE Transactions on Consumer Electronics, vol.48, no.4, pp.1026-1032, 2002. [19] M. Week and M. Bayoumi, “Discrete wavelet transform: architectures, design and performance issues,” Journal of VLSI Signal Processing Systems - portal.acm.org, vol.35, no.2, pp.155-178, 2003. [20] C. Chrysafis, and A. Ortega, “Line-based, reduced memory, wavelet image compression,” IEEE Transactions on Image Processing, vol.9, no.3, pp.378-389, 2000. [21] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting schemes,” J. Fourier Anal. Appl., vol. 4, pp. 247–269, 1998. [22] W. Sweldens, “The lifting scheme: A new philosophy in biorthogonal wavelet constructions,” in Proc. SPIE, vol.2569, pp. 68–79, 1995. [23] A.R. Calderbank, I. Daubechies, W. Sweldens, and B.L. Yeo, “Wavelet transform that map integers to integers,” Applied and Computational Harmonic Analysis (ACHA), vol.5, no.3, pp.332-369, 1998. [24] H. Meng, Z. Wang, “Fast spatial combinative lifting algorithm of wavelet transform using the 9/7 filter for image block compression,” Electronics Letters, vol.36, no.21, pp.1766-1767, 2000. [25] W. Jiang and A. Ortega, “Lifting factorization-based discrete wavelet transform architecture design,” IEEE Trans. Circuits Syst. Video Technol., vol.11, no.5, pp. 651–657, May 2001. [26] K. Andra, C. Chakrabarti and T. Acharya, “A VLSI architecture for lifting-based forward and inverse wavelet transform,” IEEE Transactions on Signal Processing, vol.50, no. 4, pp. 966-977, 2002. [27] L. Liu, X. Wang, et al, “A VLSI architecture of spatial combinative lifting algorithm based 2-D DWT/IDWT,” Asia-pacific Conference on Circuits and System, vol.2, pp.299-304, 2002. [28] P.-C. Tseng, C.-T. Huang, L.-G Chen, “Generic RAM-based architecture for two-dimensional discrete wavelet transform with line-based method,” Asia-pacific Conference on Circuits and System, vol.2, pp.363-366, 2002. [29] G. Dillen, B. Georis, J. D. Legat and O. Cantineau, “Combined line-based architecture for the 5-3 and 9-7 wavelet transform of jpeg2000,” IEEE Trans. on Circuits and Systems for Video Tech., vol.13, no.9, pp.944-950, 2003. [30] H. Yammauchi, S. Okada, et al, “Image processor capable of block-noise-free JPEG2000 compression with 30 frame/s for digital cameral applications,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers, vol.1, pp.46-477, 2003. [31] H. Liao, M.K. Mandal, and B.F. Cockburn, “Efficient architectures for 1-D and 2-D lifting-based wavelet transforms,” IEEE Transactions on Signal Processing, vol.52, no.5, pp.1315-1326, 2004. [32] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “Memory analysis and architecture for two dimensional discrete wavelet transform,” Proceeding in IEEE International Conference on Acoustics, Speech, and Signal Processing, vol.5, pp.13-16, May 2004. [33] C. Chrysafis, and A. Ortega, “Line-based, reduced memory, wavelet image compression,” IEEE Trans. on Image Processing, vol.9, no.3, pp.378-389, 2000. [34] K. K. Parhi, “VLSI digital signal processing systems design and implementation,” Beijing: China Machine Press, 2003. [35] J.-M. Jou, P.-Y. Chen, M.-S. Liang, “A scalable pipelined architecture for separable 2-D discrete wavelet transform,” Design Automation Conference, vol. 1, pp.205-208, 1999. [36] M. Ferretti, D.Rizzo, “Handling borders in systolic architectures for the 1-D discrete wavelet transform for perfect reconstruction,” IEEE Transactions on Signal Processing, vol. 48, no. 5, pp.1365-1378, May 2000. [37] M. Vishwanath, R. M. Owens and M. J. Irwin, “VLSI architectures for the discrete wavelet transform”, IEEE Transactions on Circuits and Systems, vol. 42, no. 5, pp.305-316, 1995. [38] Aleksander Grzeszczak, Mrinal K. Mandal, Sethuraman Panchanathan, “VLSI implementation of discrete wavelet transform”, IEEE Transactions on VLSI System, pp.421-433, Dec. 1996. [39] M. Vishwanath, “The recursive pyramid algorithm for the discrete wavelet transform”, IEEE Transactions on Signal Processing, vol. 42, no. 3, pp.673-677, 1994. [40] C.T. Huang, P.C. Tseng, L.G. Chen, “Flipping structure: an efficient VLSI architecture for lifting-based discrete wavelet transform”, IEEE Asia-Pacific Conference on Circuits and Systems, vol. 1, 2002, pp.383-388. [41] Peter Pirsch, Architectures for Digital Signal Processing. Chichester, John Wiley & Sons, 1998. [42] 吳炳飛、胡益強、瞿忠正、蘇崇彥、林重甫,JPEG 2000影像壓縮技術,全華科技圖書股份有限公司,2005。 [43] 鄭信源,Verilog硬體描述語言數位電路 --- 設計實務,儒林圖書公司,2004。 [44] 黃英叡、黃稚存,Verilog硬體描述語言(第二版),全華科技圖書股份有限公司,2005。 [45] 林灶生、劉紹漢,Verilog FPGA晶片設計,全華科技圖書股份有限公司,2004。 [46] 鄭群星,FPGA/CPLD數位晶片設計入門 -- 使用Xilinx ISE發展系統,全華科技圖書股份有限公司,2005。 [47] 簡弘倫,Verilog晶片設計,文魁資訊股份有限公司,2005。 [48] 古頤榛,Visual C++ 6教學範本,�眳p資訊股份有限公司,2005。 [49] 張智星,MATLAB程式設計與應用,清蔚科技,2000。
|