跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 22:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳政威
研究生(外文):Jeng-wei Chen
論文名稱:基於JPEG2000之適應性量化器設計
論文名稱(外文):JPEG2000 Adaptive Quantizer Design
指導教授:陳伯岳陳伯岳引用關係
指導教授(外文):Po-Yueh Chen
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:資訊工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:39
中文關鍵詞:量化器離散小波轉換
外文關鍵詞:DWTquantizer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文擬提出一個以適應性量化器為基礎,並結合離散小波轉換技術的影像壓縮系統,未來將可應用於數位相機及電子視訊等領域。整個論文包含了量化器的選擇、量化區間的大小影響、及小波轉換的應用之可行性評估。離散小波轉換在影像壓縮方面已應用非常廣泛,因為它有著較高的壓縮率且較好的容錯率,但是在量化器上,採用唯一的方式,有著一定的點,較不能針對不同的影像,產生一樣的良率,例如ㄧ般數位影像及人工數位影像,但是藉由適應性量化器,可以解決這方面的問題,而且它也保留了無失真及可失真的兩種模式,針對不同的壓縮率,它皆可提供不錯的方案。
In this paper, we propose an image compression system integrating Discrete Wavelet Transform (DWT) and adaptive quantizer design. The design considers the selection of quantization tables, the appropriate length for quantization intervals, and the DWT sub-bands quantization applied to. The proposed system can be efficiently employed in a variety of applications like digital cameras and computer vision. DWT has been applied in image compression for years since it provides considerable compression rate and supports multi-resolution representation. However, when the DWT coefficients are quantized by a fix quantizer, the image quality is a case-by-case parameter. Images with different characteristics result in different system performance values. With an adaptive quantizer, the users can select lossy or lossless mode according to their own requirements for image quality. Furthermore, the system performance becomes a stable parameter for the compression system.
第一章 簡介…………………………………………..1
1.1 研究背景及目的………………………………….1
1.2 研就動機.………………………………………..2
1.3 文章架構….……………………………………..2
第二章 文獻探討………………………………......4
2.1 相關背景與分類……………………………..…4
2.2 專關專業知識與文獻回顧.……………………..8
第三章 研究方法……………………………………13
3.1 編碼端流程………………………………………13
3.1.1 傳統模式……………………………………..13
3.1.2 適應性模式…………………………………..15
3.2 解碼端流程………………………………………18
3.2.1 傳統模式………………………………………18
3.2.2 適應性模式……………………………………19
3.3 判斷法則…………………………………………20
第四章 實驗結果與分析……………………………21
4.1 實驗結果…………………………………………24
4.2 效能分析…………………………………………26
第五章 結論與未來研究目標………………………28
5.1 結論………………………………………………28
5.2 未來研究方向與目標……………………………29
[1] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 Still Image System: An Overview,” IEEE Trans. On consumer Electronics, 476(4), pp. 1103-1127
[2] Diego Santa-Cruz and Touradj Ebrahimi, “An Analytical Study of JPEG2000 Functionalities,” Proceedings IEEE International Conference on Image Processing, Vancouver, CA
[3] Diego Santa-Cruz, Raphael Grosbois and Touradj Ebrahimi, “JPEG2000 performance evaluation and assessment” .To appear in Image Communications
[4] Jiang, W. Ortega, A. , “Lifting Factorization -Based Discrete Wavelet Transform Architecture Design” IEEE Transactions on Circuits and Systems for Video Technology, Volume 11, Issue 5, May 2001 Page(s):651 - 657
[5] Chrysafis, C., Ortega, A. “Line based reduced memory, wavelet image compression” Data Compression Conference, 1998. DCC ''98. Proceedings 30 March-1 April 1998 Page(s): 398 – 407 Digital Object Identifier 10.1109/DCC.1998.672177
[6] Movva, S., Srinivasan, S. ”A novel architecture for lifting-based discrete wavelet transform for JPEG2000 standard suitable for VLSI implementation” VLSI Design, 2003. Proceedings. 16th International Conference on 4-8 Jan. 2003 Page(s):202 - 207 Digital Object Identifier 10.1109/ICVD.2003.1183137
[7] Moccagata, S. Sodagar, J. Liang and H. Chen, “Error Resilient Coding in JPEG2000 and MPEG4,” IEEE Journal of Selected Areas in Communications(JSAC), 3653, San Jose, CA, 1999
[8] ISO/IEC FCD 155444-1, Information Technology JPEG2000 Image Coding System, 2000(JPEG2000 Part I)
[9] ISO/IEC FCD 155444-2, Information Technology JPEG2000 Image Coding System: Extensions, 2000(JPEG2000 Part II)
[10]Biligin, P. J. Sementilli, and M. W. Marcellin, “Progressive Image Coding Using Trellis Coded Quantization,” IEEE Trans. on Image Processing, 8(11), pp. 1638-1643, 1999
[11] Andra, K., Chakrabarti, C. Acharya, T.,” Efficient implementation of a set of lifting based wavelet filters” IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP ''01). Volume 2, 7-11 May 2001 Page(s):1101 - 1104 vol.2 Digital Object Identifier 10.1109/ICASSP.2001.941112
[12] C. Christopoulos, J. Askelof and M. Larsson, “Efficient Methods for Encoding Region of Interest in the Upcoming JPEG2000 Still Image Coding Standard” , IEEE Signal Processing Letters, 2000
[13] Po-Yueh Chen and En-Chi Liao, “A New Algorithm for Haar Wavelet Transform,” 2002 IEEE International Symposium on Intelligent Signal Processing and Communication System, pp453-pp457, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C., Nov. 21-24, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top