跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/13 04:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁瑞源
研究生(外文):Jui-Yuan Liang
論文名稱:藉由自適應共振類神經網路自動建構本體論知識之研究
論文名稱(外文):The Study of Domain Ontology Construction Automatically Based on ART Neural Network
指導教授:陳榮靜陳榮靜引用關係
指導教授(外文):Rung-Ching Chen
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:資訊管理系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:47
中文關鍵詞:語意網本體論布林模式TF-IDF遞迴式自適應共振理論網路
外文關鍵詞:Recursive ART networkTF-IDFBoolean operationWeb pagesdomain ontology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:4
語意網(Semantic Web)希望提供全球資訊網上的資源,具有語意的標記,使其變成電腦能夠理解的資料。本體論(ontology)能夠提供一組定義完整的字彙作為「資料的描述性資訊」(metadata),使全球資訊網上的資料能夠明確地被定義。藉由定義共享的、通用的本體論,使人與電腦之間不只能達到語法上的交談,更能達到語意上的交談,準確地作溝通。因此語意網的成功發展因素,在於能否迅速且容易地建構本體論。本研究認為本體論是一個階層式概念的資訊組織網路,能夠有效地使用在一個有系統的領域知識裡,因此它在各個領域中扮演重要的角色。本文提出一個可以快速的自動產生本體論之概念,從網際網路中截取相關領域網頁文件,利用HTML(Hypertext Markup Language)的標籤選擇所需要的關鍵字詞,藉由這些字詞在文件中之關係 建構一個屬於語意網中的語意本體。實驗步驟包括:(1)從網頁標籤特徵來找出相關的關鍵字,(2)移除stop-word,(3)找出可以代表該領域的Key-term然後運用TF-IDF(Term Frequency-Inverse Document Frequency)來判斷Key-term的權重值,(4)結合本研究所提出的遞迴式自適應共振理論網路(Recursive Adaptive Resonance Theory network,RART)來做分群,(5)最後使用布林模式的集合限制存在之方式判別上下階層之關連性,就是超類別與子類別的階層架構關係,上層的概念比較一般化,在下層的概念比較具體化,到了最底層時就變成了一個具體的實例,最後再透過Java套件Jena將結果輸出為符合RDF(Resource Description Framework)檔案。
Ontology can be used to build metadata which describes data about data and offers a group of glossaries with individual definition that covers a certain knowledge area. It not only transfers syntax of words but also accurately transfers semantic data between human users and the network. Hence, the usefulness of the semantic web depends on whether the domain of ontology can be constructed effectively and correctly. In this thesis we propose an automated method to construct an domain ontology. First, we collected domain-related web pages from the Internet. Secondly, we use the HTML (Hypertext Markup Language) tag labels to choose meaningful terms from the web pages. Next, we use these terms to construct an domain ontology by calculating a TF-IDF (Term Frequency-Inverse Document Frequency) to find the weight of terms, using a RART network (Recursive Adaptive Resonance Theory Network) to cluster terms. Each group of terms will find a candidate keyword for ontology construction. Boolean operations locate individual keywords in a hierarchy. Finally, the system outputs an ontology in a Jena package using an RDF (Resource Description Framework) format. The primary experiment indicates that our method is useful for an domain ontology creation.
中文摘要 I
Abstract II
誌謝 III
Table of Contents V
List of Tables VII
List of Figures VIII
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.2 Objective 2
1.3 The framework of thesis 4
Chapter 2 Literature Review 6
2.1 Semantic web 6
2.2 Ontology 8
2.3 Related technologies 11
2.3.1 Content feature of web pages 11
2.3.2 Information classification model 11
2.3.3 Single value decomposition 13
2.3.4 Adaptive Resonance Theory network: ART 14
Chapter 3 Constructing Ontology 17
Chapter 4 Experimental Result 24
4.1 First experiment 24
4.2 Second stage experiment 32
Chapter 5 Conclusion and Future Work 39
References 40
Appendix 1 44
Appendix 2 47
H. Alani, S. Kim, D. Millard, M. Weal, W. Hall, P. Lewis and N. Shadbolt(2003), “Automatic Ontology-Based Knowledge Extraction from Web documents,” IEEE Intelligent Systems, Vol. 18, pp. 14-21.
E. Atlam, M. Fuketa, K. Morita and J. Aoe(2003), “Documents Similarity Measurement Using Field Association Terms,” Information Processing and Management, Vol. 39, pp. 809-824.
A. Bernaras, I. Laresgoiti and J. Corera(1996), “Building and Reusing Ontologies for Electrical Network Applications,” In Proceedings of the 12th ECAI, Budapest, Hungary, pp. 298-302.
V. Bhat, T. Oates, V. Shanbhag and C. Nicholas(2004), “Finding Aliases on the Web Using Latent Semantic Analysis,” Data & Knowledge Engineering, Vol. 49, pp. 129-143.
T. Berners-Lee and M. Fischetti(1999), “Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web by Its Inventor,” IEEE Transactions on processional communication, Vol. 43, No. 2, pp. 217-218.
R. C. Chen and C. H. Hsieh(2006), “Web Page Classification Based on a Support Vector Machine Using a Weighted Vote Schema,” Expert Systems With Applications, Vol. 31, No. 2, pp. 427-435.
M. Diligenti and M. Gori(2004), “A Unified Probabilistic Framework for Web Page Scoring Systems,” IEEE Transaction on knowledge and data engineering, Vol. 16, No. 1. pp. 4-16.
N. Fuhr(1999), “Towards Data Abstraction in Networked Information Retrieval Systems,” Information Processing & Management, Vol. 35, No.2, pp. 101-119.
N. Guarino(1998), “Formal Ontology and Information System,” Proceedings of FOIS’98(FOIS''98), pp. 3-15.
T. R. Gruber(1993), “A Translation Approach to Portable Ontology Specifications,” Knowledge Acquisition, Vol. 5, No.2, pp. 199-220.
L. Gillam, M. Tariq and K. Ahmad(2005), “Terminology and the construction of ontology,” Terminology, pp. 55-81.
A. Gomez-Perez and O. Corcho(2002), “Ontology Languages for the Semantic Web,” IEEE Intelligent Systems, Vol. 17, No.1, pp. 54-60.
M. Huhns and M. Singh(1997), “Ontologies for Agents,” IEEE Internet Computing, Vol. 1, pp. 81-83.
B. Hui and E. Yu(2005), “Extracting conceptual relationships from specialized documents,” Data & knowledge Engineering, Vol. 54, No.1, pp. 29-55.
J. Hendler(2001), “Agents and the Semantic Web,” IEEE Intelligent Systems, Vol. 16, pp. 30-37.
S. Kang, W. Huh, S. Lee and Y. Kim(2000), “Automatic Classification of WWW Documents Using a Neural Network,” International Conference on Production Research, Bangkok, Thailand (CD ROM).
L. Khan and F. Luo(2002), “Ontology Construction for Information Selection,” Proceedings of 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2002), pp. 122-127.
M. S. Khan and S. W. Khor(2004), “Web Document Clustering Using a Hybrid Neural Network,” Journal of Applied Soft Computing, Vol. 4, No. 4, pp. 423-432.
M. Klein(2001), “XML, RDF, and Relatives,” IEEE Intelligent Systems, Vol. 16, No.2, pp. 26-28.
N. Lammari and E. Metais(2004), “Building and Maintaining Ontologies: a Set of Algorithms,” Data & Knowledge Engineering, Vol. 48, No.2, pp. 155-176.
T. Liebig and O. Noppens(2005), “OntoTRACK: A Semantic Approach for Ontology Authoring,” journal of Web Semantics: Science, Services and Agents, Vol. 3, pp. 116-131.
A. Maedche and S. Staab(2001), “Ontology Learning for the Semantic Web,” IEEE Intelligent Systems, Vol. 16, No.2, pp. 72-79.
E. Motta, S. B. Shum and J. Domingue(2000), “Ontology-driven document enrichment: principles, tools and applications,” International Journal of Human-Computer Studies, Vol. 52, No.5, pp. 1071-1109.
N.F Noy and D.L McGuinness(2001), “Ontology Development 101: A Guide to Creating Your First Ontology,” Stanford knowledge System Laboratory Technical Report KSL-01-05.
A. Philpot, M. Fleischman and E. Hovy(2003), “Semi-automatic Construction of a General Purpose Ontology,” Proceedings of the International Lisp Conference.
K. Risvik and R. Michelsen(2002), “Search Engines and Web dynamics,” Computer Networks, Vol. 39, pp. 289-302.
M. Shamsfard and A. A. Barforoush(2004), “Learning ontologies from natural language texts,” International Journal of Human-Computer Studies, Vol. 60, No.1, pp. 17-63.
K. W. Tan, H. Han and R. Elmasri(2000), “Web Data Cleansing and Preparation for Ontology Extraction Using WordNet,” First International Conference on Web Information Systems Engineering (WISE''00), Vol. 2, pp. 11-18.
H. Tirri(2003), “Search in Vain: Challenges for Internet Search,” IEEE Computer, Vol. 36, No.1, pp. 115-116.
L. Varlamis, M. Vazirgiannis and M. Halkidi(2004), “THESUS, a Closer View on Web Content Management Enhanced with Link Semantics,” IEEE Transactions on knowledge and data engineering, Vol. 16, No. 6, pp. 685-700.
N. Wang and X. Xu(2000), “A Method to Build Ontology,” Conference on High Performance Computing, Vol. 2, pp. 672-673.
B. Yates(2003), “Information Retrieval in the Web Beyond: Beyond Current Search Engines,” Approximate Reasoning, Vol. 34, pp. 97-104.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊