1. Nelson, D. L., and Cox, M. M., Lehninger Principles of Biochemistry, 3e, Worth Publishers, New York (2000).
2. Branden, C.-I., and Tooze, J., Introduction to Protein Structure 2e, Garland Publishing, New York (1999).
3. Stryer, L., Biochemistry, 4e, W. H. Freeman & Company, New York (1995).
4. Doolittle, R. F., “Redundancies in protein sequences” in Prediction of Protein Structure and the Principles of Protein Conformation (Fasman, G. D., ed.) Plenum Press, New York, pp. 599-623 (1989).
5. Zwanzig, R., Szabo, A., and Bagchi, B., “Levinthal’s paradox”, Proc. Natl. Acad. Sci. USA, vol.89, pp.20-22 (1992).
6. Wales, D., Energy Landscapes with Applications to Clusters, Biomolecules and Glasses, Cambridge Univ. Press, Cambridge (2003).
7. Bryngelson, J. D., and Wolynes, P. G.., “Spin glasses and the statistical mechanics of protein folding”, Proc. Natl. Acad. Sci. USA, vol.84, pp.7524-7528 (1987).
8. Leopold, P. E., Montal, M., and Onuchic, J. N., “Protein folding funnels : a kinetic approach to the sequence-structure relationship”, Proc. Natl. Acad.
Sci. USA, vol.89, pp.8721-8725 (1992).
9. Wolynes, P. G., Onuchic, J. N., and Thirumalai, D., “Navigating the folding routes”, Science, vol.267, pp.1619-1620 (1995).
10. Wolynes, P. G.., “Folding funnels and energy landscapes of large proteins within the capillarity approximation”, Proc. Natl. Acad. Sci. USA, vol.94,
pp.6170-6175 (1997).
11. Onuchic, J. N., and Wolynes, P. G.., “Theory of protein folding”, Current Opinion in Structural Biology, vol.14, pp.70-75 (2004).
12. Daggett, V., and Fersht, A. R., “Is there a unifying mechanism for protein folding?”, Trends in Biochemical Sciences, vol.28, pp.18-25 (2003).
13. Kim, P. S., and Baldwin, R. L., “Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding”, Annu. Rev. Biochem., vol.51, pp.459-489 (1982).
14. Kim, P. S., and Baldwin, R. L., “Intermediates in the folding reactions of small proteins”, Annu. Rev. Biochem., vol.59, pp.631-660 (1990).
15. Epand, R. M., and Scheraga, H. A., “The influence of long-range interactions on the structure of myoglobin”, Biochemistry, vol.7, pp.2864-2872 (1968).
16. de Prat Gay, G., Ruiz-Sanz, J., Neira, J. L., Itzhaki, L. S., and Fersht, A. R., “Folding of a nascent polypeptide chain in vitro : Cooperative formation of
structure in a protein module”, Proc. Natl. Acad. Sci. USA, vol.92, pp.3683-3686 (1995).
17. Dobson, C. M., “Unfolded proteins, compact states and molten globules”, Curr. Opin. Struct. Biol., vol.2, pp.6-12 (1992).
18. Shortle, D., “The denatured state (the other half of the folding equation) and its role in protein stability”, FASEB J., vol.10, pp.27-34 (1996).
19. Ptitsyn, O. B., “Structures of folding intermediates”, Curr. Opin. Struct. Biol., vol.5, pp.74-78 (1995).
20. Uversky, V. N., and Fink, A. L., “The chicken-egg scenario of protein folding revisited”, FEBS Lett., vol.515, pp.79-83 (2002).
21. Zwanzig, R., “Two-state models of protein folding kinetics”, Proc. Natl. Acad. Sci. USA, vol.94, pp.148-150 (1997).
22. Privalov, P. L., “Stability of proteins : Small globular proteins”, Adv. Protein Chem., vol.33, pp.167-241 (1979).
23. Privalov, P. L., “Stability of proteins which do not present a single cooperative system”, Adv. Protein Chem., vol.35, pp.1-104 (1982).
24. Hao, M.-H., and Scheraga, H. A., “Theory of two-state cooperative folding of proteins”, Acc. Chem. Res., vol.31, pp.433-440 (1998).
25. Schellman, J. A., “The thermodynamic stability of proteins”, Annu. Rev. Biophys. Biophys. Chem., vol.16, pp.115-137 (1987).
26. Qian, H., and Chan, S. I., “Hydrogen exchange kinetics of proteins in denaturants : A generalized two-process model”, J. Mol. Biol., vol.286, pp.607-616 (1999).
27. Anfinsen, C. B., Haber, E., Sela, M., and White, F. H., “The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain”, Proc. Natl. Acad. Sci. USA, vol.47, pp.1309-1314 (1961).
28. Anfinsen, C. B., “Principles that govern the folding of protein chains”, Science, vol.181, pp.223-230 (1973).
29. Honig, B., Ray, A., and Levinthal, C.,“Conformational flexibility and protein folding : rigid structural fragments connected by flexible joints in subtilisin BPN”, Proc. Natl. Acad. Sci. USA, vol.73, pp.1974-1978 (1976).
30. Misawa, S., and Kumagai, I., “Refolding of therapeutic proteins produced in Escherichia coli as inclusion bodies”, Biopolymers, vol.51, pp.297-307 (1999).
31. Kuwajima, K., Yamaya, H., and Sugai, S., “The burst-phase intermediate in the refolding of β-Lactoglobulin studied by stopped-flow circular dichroism and absorption spectroscopy”, J. Mol. Biol., vol.264, pp.806-822 (1996).
32. Nawrocki, J. P., Chu, R.-A., Pannell, L. K., and Bai, Y., “Intermolecular aggregations are responsible for the slow kinetics observed in the folding of cytochrome c at neutral pH”, J. Mol. Biol., vol.293, pp.991-995 (1999).
33. Chang, C.-C., Su, Y.-C., Cheng, M.-S., and Kan, L.-S., “Protein folding by a quasi-static-like process : A first-order state transition”, Phys. Rev. E, vol.66, 021903 (2002).
34. Liu, Y.-L., Lee, H.-T., Chang, C.-C., and Kan, L.-S., “Reversible folding of cysteine-rich metallothionein by an overcritical reaction path”, Biochem. Biophys. Res. Comm., vol.306, pp.59-63 (2003).
35. Chang, C.-C., Cheng, M.-S., Su, Y.-C., and Kan, L.-S., “A first-order-like state transition for recombinant protein folding”, J. Biomol. Struct. Dyn., vol.21, pp.247-255 (2003).
36. Sasahara, K., Demura, M., and Nitta, K., “Partially unfolded equilibrium state of hen lysozyme studied by circular dichroism spectroscopy”, Biochemistry, vol.39, pp.6475-6482 (2000).
37. Miranker, A., Radford, S. E., and Dobson, C. M.,“Demonstration by NMR of folding domains in lysozyme”, Nature, vol.349, pp.633-636 (1991).
38. Barrick, D., and Baldwin, R. L.,“Three-state analysis of sperm whale apomyoglobin folding”, Biochemistry, vol.32, pp.3790-3796 (1993).
39. Fersht, A. R.,“The sixth data lecture. Protein folding and stability : the pathway of folding of barnase”, FEBS lett., vol.325, pp.5-16 (1993).
40. Dyson, H. J., and Wright, P. E.,“Insight into the structure and dynamics of unfolded proteins from nuclear magnetic resonance”, Adv. Protein Chem., vol.22, pp.311-340 (2002).
41. Dyson, H. J., and Wright, P. E.,“Unfolded proteins and protein folding studied by NMR”, Chem. Rev., vol.104, pp.3607-3622 (2004).
42. Merutka, G.., Dyson, H. J., and Wright, P. E.,“Random coil 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG”, J. Biomol. NMR, vol.5, pp.14-24 (1995).
43. Braun, D., Wider, G.., and Wuthrich, K.,“Sequence-correlated 15N random coil chemical shifts”, J. Am. Chem. Soc., vol.116, pp.8466- (1994).
44. Baum, J., Dobson, C. M., Evans, P. A., and Hanley, C.,“Characterization of a partly folded protein by NMR methods : studies on the molten globule state of guinea pig α-lactalbimin”, Biochemistry, vol.28, pp.7-13 (1989).
45. Hughson, F. M., Wright, P. E., and Baldwin, R. L. “Structural characterization of a partly folded apomyoglobin intermediate”, Science, vol.249, pp.1544-1548 (1990).
46. Jeng, M.-F., Englander, S. W., Elove, G.. A., Roder, H., and Wand, A. J., “Structural descdription of acid-denatured cytochrome c by hydrogen exchange and 2D NMR” ,Biochemistry, vol.29, pp.10433-10437(1990)
47. Malcolm H. Levitt., Spin dynamics:basics of nuclear magnetic reonance,Chichester ;New York:John Wiley&Sons(2002)
48. Wüthrich, K., “NMR of proteins and nucleic acids.” Wiley, New York(1986).
49. Wüthrich, K.,”NMR studies of structure and function of biological macromolecules”, Nobel Lecture, December 8, 2002 pp.235-267
50. 彭佾威,「藉由核磁共振光譜,圓二色光譜及同源性比對法對SYK 激酶區胜肽片段構型之研究」,碩士論文,朝陽科技大學應用化學所,台中縣(2005)51. 陳亦徵,「體制素在脂質環境中的位置及動力學性質」,碩士論文,朝陽科技大學應用化學所,台中縣(2003)52. 黃太煌「利用核磁共振光譜學探討蛋白質的結構、動性及功能」,物理雙月刋,第廿四卷,第三期,pp.403-412(2001)53. 黃麗純,「利用MNMR 研究一種新蛇毒蛋白分CTXn 之結構與動力學」,碩士論文,國立中山大學化學所,高雄市(2003)54. Andrew E. Derome “Modern NMR techniques for chemistry research”
55. 古里秀,「以核磁共振光譜技術探測體制素與微胞作用之性質」,碩士論文,朝陽科技大學化學所,台中縣(2000)56. Stryer, L., Biochemistry, 4e, W. H. Freeman & Company, New York (1995).
57. Tanford, C., “Protein denaturation”, Adv. Protein Chem., vol.23, pp.121-282 (1968).
58. Aune, K. C., and Tanford, C., “Thermodynamics of the denaturation of lysozyme by guanidine hydrochloride. I. Dependence on pH at 25 degrees”, Biochemistry, vol.8, pp.4579-4585 (1969).
59. Aune, K. C., and Tanford, C., “Thermodynamics of the denaturation of lysozyme by guanidine hydrochloride. II. Dependence on denaturant concentration at 25 degrees”, Biochemistry, vol.8, pp.4586-4590 (1969).
60. Tanford, C., “Protein denaturation. C. Theoretical models for the mechanism of denaturation”, Adv. Protein Chem., vol.24, pp.1-95 (1970).
61. Redfield, C., and Dobson, C. M., “Sequential 1H NMR assignments and secondary structure of hen egg white lysozyme in solution”, Biochemistry, vol.27, pp.122-136 (1988).
62. Smith, L. J., Sutcliffe, M. J., Redfield, C., and Dobson, C. M., “Analysis of ψ and χ1 torsion angles for hen lysozyme in solution from 1H NMR spin-spin coupling constants”, Biochemistry, vol.30, pp.986-996 (1991).
63. Radford, S. E., Dobson, C. M., and Evans, P. A., “The folding of hen lysozyme involves partially structured intermediates and multiple pathways”, Nature, vol.358, pp.302-307 (1992).
64. Buck, M., Radford, S. E., and Dobson, C. M., “A partially folded state of hen egg white lysozyme in trifluoroethanol : Structural characterization and implications for protein folding”, Biochemistry, vol.32, pp.669-678 (1993).
65. Buck, M., Schwalbe, H., and Dobson, C. M., “Characterization of conformational preferences in a partly folded protein by heteronuclear NMR spectroscopy : Assignment and secondary structure analysis of hen egg-white lysozyme in trifluoroethanol”, Biochemistry, vol.34, pp.13219-13232 (1995).
66. Fiebig, K. M., Schwalbe, H., Buck, M., Smith, L. J., and Dobson, C. M., “Toward a description of the conformations of denatured states of protein. Comparison of a random coil model with NMR measurements”, J. Phys.
Chem., vol.100, pp.2661-2666 (1996).
67. Schwalbe, H., Fiebig, K. M., Buck, M., Jones, J. A., Grimshaw, S. B., Spencer, A., Glaser, S. J., Smith, L. J., and Dobson, C. M., “Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8M urea”,
Biochemistry, vol.36, pp.8977-8991 (1997).
68. Laruents, D. V., and Baldwin, R. L.,“Characterization of the unfolding pathway of hen egg white lysozyme”, Biochemistry, vol.36, pp.1496-1504(1997)
69. Sasahara, K., Demura, M., and Nitta, K., “Partially unfolded equilibrium state of hen lysozyme studied by circular dichroism spectroscopy”, Biochemistry, vol.39, pp.6475-6482
70. Lidia V. Nahbar, David J. Craik, John D. Wade, and Michael J. McLeish, “Identification of initiation sites for T4 lysozyme folding using CD and NMR spectroscopy of peptide fragments”, Biochemistry, vol.39,pp.5911-5920
71. Wang, Yunjun, Bjorndahl, Trent C., Wishart, David S. , "Letter to the Editor: Complete 1H and Non-carbonylic 13C Assignments of Native Hen Egg-white Lysozyme," J. Biomol. NMR 17, 83-84 (2000).
72. Young, A. C. M., Dewan, J. C., Nave, C., Tilton, R. F.: Comparison of Radiation-Induced Decay and Structure Refinement from X-Ray Data Collected from Lysozyme Crystals at Low and Ambient Temperatures J.Appl.Crystallogr. 26 pp. 309 (1993)