(3.238.174.50) 您好!臺灣時間:2021/04/18 01:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴帥如
研究生(外文):Shuai-Ju Lai
論文名稱:利用RAPD分子標誌技術與18SrDNA定序鑑定台灣爪哇擬青黴菌(Paecilomycesjavanicus)
論文名稱(外文):Identification of Paecilomyces javanicus from Taiwan by RAPD Molecular Markers and 18S rDNA Sequencing Techniques
指導教授:劉炳嵐高穗生高穗生引用關係
指導教授(外文):Bing-Lan LiuSuey-Sheng Kao
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:應用化學系碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:92
中文關鍵詞:18S核醣體DNA逢機增幅多型性DNA爪哇擬青黴菌
外文關鍵詞:Paecilomyces javanicusRAPD18S rDNA
相關次數:
  • 被引用被引用:5
  • 點閱點閱:441
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
爪哇擬青黴菌(Paecilomyces javanicus)屬於不完全菌亞門(Deuteromycotina)、線菌綱(Hyphomycetes)、鏈孢霉目(Moniliales)、鏈孢霉科(Moniliaceaes)、擬青黴菌屬(Paecilomyces)。爪哇擬青黴菌(P. javanicus)是一種蟲生真菌,在自然界裡主要感染雙翅目和鱗翅目昆蟲,其寄主範圍廣泛、產孢量大、在自然界中出現的頻率頗高,深具研究價值。以往傳統鑑定真菌的方法頗具爭議性,故本研究嘗試以RAPD分子標誌技術與18S rDNA基因定序法,針對由台灣北、中、南、東部各地採集到的爪哇擬青黴菌22株,分析菌株與菌株之間基因的差異性,並進一步探討在不同地理區域採集的爪哇擬青黴菌,其親緣關係是否具有相關性。利用RAPD分子標誌技術以UPGMA程序所建構的相似性樹狀圖顯示,在相似性65.2%時,產生5個群,顯示菌株與菌株間的差異很明顯,具相當高的歧異度,有效的區分出同種中菌株之差異性,但所產生的群與採集地域來源並無顯著相關性。進一步利用18S rDNA基因定序法,鑑別不同菌株在系統分類所在位置,定出每株菌株的基因序列,以分辨出菌株間之相異程度,以Neighbor-Joining (NJ)、Maximum-Likelihood (ML)及Maximum-Parsimony (MP)三種方法建構出爪哇擬青黴菌之親緣關係樹狀圖,三種樹狀圖分類結果大致相似,可將本土採集的爪哇擬青黴菌分類為3個群,所產生的群與採集地域來源間亦無顯著之相關性。而18S rDNA定序出的序列可以作為物種分類上有意義之基因序列,提供做為每一供試菌株之身分證明。
Paecilomyces javanicus belonging to Paecilomyces, Moniliaceaes, Moniliales, Hyphomycetes, Deuteromycotina, is an entomopathogenic fungus with high sporulation and specific against Diptera and Lepidoptera. It is widely dispersed among different hosts and localities. The traditional identification methodology for this fungus is rather controvertible. In this study, we tried to differentiate the genetic difference among 22 P. javanicus isolates sampled from northern, central, southern and eastern part of Taiwan with RAPD molecular makers and 18S rDNA sequencing techniques. Furthermore, the phylogeny of P. javanicus sampled from difference localities was also studied. We used UPGMA program of RAPD molecular makers techniques to establish the dendrogram. There were 5 clusters generated when similarity is 65.2%. This showed the significant difference among isolates, but it was irrelevant to the localities sampled. The 18S rDNA sequencing techniques was also applied to characterize the genetic difference among 22 P. javanicus isolates tested. The 18S rDNA of each isolates was sequenced. Those methods, namely, Neighbor-Joining (NJ)、Maximum-Likelihood (ML) and Maximum-Parsimony (MP) were employed to establish the phylogenic tree for P. javanicus. isolates. Three phylogenic trees generated from different methods established approximately the same pattern. Isolates were grouped 3 clusters according to sequence identity. It was irrelevant between the localities and classification. The 18S rDNA sequence was a useful tool for the identity description of each P. javanicus isolates.
第一章 緒論.......................................................................................................1
1.1. 前言.......................................................................................................1
1.2. 擬青黴菌屬(Paecilomyces)之特性及分類研究..................................4
1.2.1. 擬青黴菌屬之特性......................................................................4
1.2.2. 擬青黴菌屬之分類沿革..............................................................4
1.3. 聚合酵素長鏈連鎖反應(PCR)...........................................................12
1.3.1. PCR原理..................................................................... ...............12
1.3.2. 影響PCR反應因素................................................................ ...13
1.3.3. RAPD分子標誌技術.................................................................13
1.3.4. RAPD親緣關係之分析..............................................................15
1.4. 利用核醣體基因探討真菌之分類.....................................................16
1.4.1. 真菌分類技術之發展................................................................16
1.4.2. 真菌核醣體基因結構................................................................17
1.4.3. 核醣體基因在真菌分類之運用................................................19
1.5. 實驗目的及研究範圍.........................................................................21
第二章 實驗方法與步驟.................................................................................22
2.1. 儀器設備.............................................................................................22
2.2. 實驗藥品.............................................................................................23
2.3. 利用RAPD分子標誌鑑定擬青黴菌.................................................24
2.3.1. 菌株來源............................................................. ..................... 24
2.3.2. 擬青黴菌菌株的培養方法................................................. ..... 28
2.3.3. 擬青黴菌DNA之萃取與定量.................................................28
2.3.4. RAPD供試引子. ..................................................................... 29
2.3.5. RAPD反應條件..........................................................................30
2.3.6. RAPD增幅圖譜之資料分析......................................................32
2.4. 利用18S rDNA基因序列進行擬青黴菌分類研究...........................34
2.4.1. 引子的設計.......................................................................... .....34
2.4.2. .PCR反應條件....................................................................... ....35
2.4.3. PCR產物定序....................................................................... .....39
2.4.4. 18S rDNA基因序列處理...........................................................39
2.4.5. 不同種間的擬青黴菌進行18S rDNA序列比對......................39
2.4.6. 資料整理與分析....................................................................... 43
第三章 結果.....................................................................................................44
3.1. RAPD分子標誌鑑定擬青黴菌...........................................................44
3.1.1. 圖譜分析....................................................................... ..... ......44
3.1.2. 相似性矩陣(similarity matrix) ....................................... ..... ....55
3.1.3. 相似性樹狀圖(dendrogram) ....................................... ..... ...... 55
3.2. 18S rDNA定序進行爪哇擬青黴菌分類研究....................................60
3.2.1. 引子的設計....................................................................... ..... ..60
3.2.2. PCR反應結果....................................................................... .....60
3.2.3. 18S rDNA基因序列比對的差異...............................................60
3.2.4. 爪哇擬青黴菌18S rDNA和基因庫中相近序列的比對..........64
3.2.5. 擬青黴菌18S rDNA序列之親緣關係樹狀圖..........................64
第四章 討論.....................................................................................................73
4.1. RAPD分子標誌鑑定擬青黴菌..........................................................73
4.1.1. 引子的篩選................................................................................73
4.1.2. 相似性矩陣................................................................................73
4.1.3. 相似性樹狀圖............................................................................74
4.2. 18S rDNA定序進行擬青黴菌分類研究............................................76
4.2.1. 引子的設計................................................................................76
4.2.2. .PCR反應結果............................................................................76
4.2.3. .18S rDNA基因序列比對的差異..............................................76
4.2.4. 擬青黴菌18S rDNA序列之親緣關係樹狀圖..........................77
4.3. 以RAPD分子標誌與18S rDNA定序探討爪哇擬青黴菌...............79
第五章 參考文獻.............................................................................................83
附錄................................................................................ ................................... 90
作者簡歷................ ............................................................................................92
表 1.1. 擬青黴菌之分類沿革.............................................................................8
表 2.1. 供試擬青黴菌之物種及來源...............................................................25
表 2.2. 爪哇擬青黴菌各族群採集地點一覽表...............................................26
表 2.3. 本研究所使用之RAPD引子序列與GC%..........................................31
表 2.4. 18S序列分析所使用的引子一覽表.....................................................41
表 2.5. NCBI Genbank中擬青黴菌18S核醣體基因序列資料表...................42
表 3.1. 利用10個RAPD引子合併分析擬青黴菌,經計算所得之相
似性矩陣..............................................................................................56
表 3.2. 爪哇擬青黴菌18S rDNA序列長度表................................................ 62
表 3.3. 爪哇擬青黴菌和NCBI Genbank Accession number AB099944
、AY526463之18S rDNA序列相同度分析...........................................63
表 3.4. 爪哇擬青黴菌E1 18S rDNA序列相同度最高的40段序列............. 66
圖 1.1. 爪哇擬青黴菌感染不同蟲體之情形.....................................................5
圖 1.2. 爪哇擬青黴菌在PDA培養基上的菌落外觀........................................6
圖 1.3. 爪哇擬青黴菌之顯微構造............................................................. .......7
圖 1.4. 真核生物核醣體組成圖.......................................................................18
圖 1.5. 蟲生真菌核醣體基因大小示意圖.......................................................20
圖 2.1. 爪哇擬青黴菌採樣地點分佈圖...........................................................27
圖 2.2. Accession number AY526463的18S rDNA基因序列..........................36
圖 2.3. Accession number AB099944的18S rDNA, ITS1, 5.8S rDNA,
ITS2, 28S rDNA基因序列................................................................37
圖 2.4. 擴增18S rDNA序列之引子位置圖.....................................................40
圖 3.1. 以引子OPM-1分析擬青黴菌之RAPD圖譜......................................45
圖 3.2. 以引子OPM-2分析擬青黴菌之RAPD圖譜......................................46
圖 3.3. 以引子OPM-4分析擬青黴菌之RAPD圖譜......................................47
圖 3.4. 以引子OPM-6分析擬青黴菌之RAPD圖譜......................................48
圖 3.5. 以引子OPM-9分析擬青黴菌之RAPD圖譜......................................49
圖 3.6. 以引子OPM-12分析擬青黴菌之RAPD圖譜....................................50
圖 3.7. 以引子OPM-14分析擬青黴菌之RAPD圖譜....................................51
圖 3.8. 以引子OPM-16分析擬青黴菌之RAPD圖譜....................................52
圖 3.9. 以引子OPM-18分析擬青黴菌之RAPD圖譜....................................53
圖 3.10. 以引子OPM-19分析擬青黴菌之RAPD圖譜..................................54
圖 3.11. 10個RAPD引子合併分析擬青黴菌,UPGMA建構之樹狀圖
............................................................................ ................................. 57
圖 3.12. 聚合酵素長鏈連鎖反應電泳圖.........................................................61
圖 3.13. 爪哇擬青黴菌E1 18S rDNA序列和資料庫比對的結果............... .65
圖 3.14. 擬青黴菌的18S rDNA部分序列比對圖...........................................67
圖 3.15. 以Neighbor-Joining (NJ)方法建構的擬青黴菌18S rDNA序列
之親緣關係圖...................................................................................68
圖 3.16. 以Maximum-Likelihood (ML)方法建構的擬青黴菌18S rDNA
序列之親緣關係圖...........................................................................69
圖3.17. 以Maximum-Parsimony (MP)方法建構的擬青黴菌18S rDNA
序列之親緣關係圖.............................................................................70
柯見螢、楊堯文、陳福旗,利用逢機擴大多型性DNA (Random amplified polymorphic DNA, RAPD)標記探討白鶴芋品種之遺傳變異性,中國園藝,第49期,第45-53頁(2003)。
姚富洲,分子生物學精要,合記書局,台北,第129頁(2001)。
許承先等譯,生物化學,歐亞書局,台北市,第351頁(1999)。
張玉瓏、徐乃芝、許素菁,生物技術,新文京開發出版,台北,第139-144頁(2004)。
張家瑜,「逢機增幅核酸多型性技術鑑別綠殭菌分離株及菌體內病毒之偵測」,碩士論文,國立中興大學昆蟲學系,台中(2000)。
曾顯雄,謝麟兮,吳文哲,Atlas of Entomophogenic Fungi from Taiwan (台灣昆蟲寄生真菌圖譜),行政院農業委員會,台北,第166-167頁(1997)。
楊素真,「台灣野生毛木耳遺傳結構之研究」,碩士論文,國立彰化師範大學生物學研究所(2003)。
劉昭民,台灣的氣象與氣候,常民文化出版(1996)。
陳文輝、傅仰明、謝瑞旻、蔡媦婷、吳俊謙、邱明森、林益賢,「蝴蝶.蘭優良品種之育成-DNA指紋研究」,經濟部八十三年度研究發展報告,第21頁,行政院經濟部印(1994)。
謝麟兮,「台灣產蟲生擬青黴菌屬及其相關菌屬之分類、同功酵素分析及病原性測定」,碩士論文,國立台灣大學植物病蟲害研究所,台北(1993)。
顧曉哲,「蟲草屬真菌核酸資料庫之建立與應用」,碩士論文,國立成功大學生物科技研究所,台南(2003)。
Alexopoulos, C. J. Charles W. Mims and M. Blackwell. Introductory Mycology. John Wiley & Sons, Inc., New York, U.S.A, pp. 868 (1996).
Avise, J. C. Phylogeography : The history and formation of spcies. Harvard college press, Cambridge Inc., London, England (2000).
Barrett, J. Molecular variation and evolution. Evolution Biology of the Fungi: Symposium of the British Mycological Society Held at the University of Bristol. A. D. Rayner, C. M. Brasier and D. Moore, eds. Cambridge University Press, New York, pp. 83-95 (1986).
Benabdelmouna, A., D. Peltier, C. Humbert and M. A. Darmency. Southern and fluorescent in situ hybridization detect three RAPD-generated PCR products useful as introgression markers in Petunia. Theor. Appl. Genet, 98, pp. 10-17 (1999).
Bidochka, M. J.,M. A. McDonald, R. J. St. Leger, and D. W. Roberts. Differentiation of species and strains of entomopathogentic fungi by random amplification of polymorphic DNA (RAPD). Curr. Genet, 25, pp. 107-113 (1994).
Bissett, J. Fungi Canadenses. No.151-159 (1979).
Briard, M., V. L. Clerc, A. E. Mausset and A. Veret. A comparative study on the use of ISSR, microsatellites and RAPD markers for varietal identification of carrot genotypes.Acta Hort. 546, pp. 337-385 (2001).
Burnett, J. H.Fundamentals of Mycology, 2nd ed. Edward Arnold, London, pp. 99-114 (1976).
Curtis M.D., Gore, J., and Oliver, R. P. The phylogeny of the tomato leaf mould fungus Cladosporium fulvum syn. Fulvia fulva by analysis of rDNA sequences. Curr. Genet. 25, pp. 318-322 (1994).
.David, J. R. Past and future fo taxomony. Molecular Techniques in Taxomony: Proceedings of the NATO Advanced Study Institute on Molecular Techniques in Taxonomy Held in Norwich (England). G. M. Hewitt, A. W. b. Johnston and J, P. W. Young, eds. Springer-Verlag Berlin Heidelbera, Germany, pp. 1-4 (1991).
Fegan, M., J. M. Manner, D. J. Maclean, J. A. G. Irwin, K. D. Z.Samuels, D. G. Holdom, and D. P. Li. Random amplified polymorphic DNA markers reveal a high degree of genetic diversity in the entomopathogenic fungus Metarhizium anisopliae var. anisopliae. J. Gen. Microbiol. 139, pp. 2075-
2081 (1993).
Frankham, R., J. D. Ballou, and D. A. Barisco. Introduction to conservation genetics. Cambridge Inc. New York (2002).
Gerbi, S. A. Evolution of ribosomal DNA. Molecular Evolutionary Genetics. Maclntype R. J. (ed.), Plenum, New York, pp. 419-517 (1985).
Goulão, L., L. Cabrita, C. M. Oliveira and J. M. Leitão. Comparing RAPD and AFLP TM analysis in discrimination and estimation of genetic similarities among apple (Malus domestica Borkh.) cultivars. Euphytica 119, pp. 259-270 (2001).
Grajal-Martin, M. J., C. J. Simon, and F. J. Muehlbauer. Use of random amplified polymorphic DNA (RAPD) to characterize race 2 of Fusarium oxysporum f.sp. pisi. Phytopathology 83, pp. 612-614 (1993).
Hillis, D. M., and Moritz, C. An overview of applications of molecular systematics. Molecular Systematics. D. M. Hillis and C. Moritz, eds. Sinauer associates, Inc., Sunderland, Massachusetts, USA, pp. 502-515 (1990).
Hodge, K. T., A. J. Sawyer, and R. A. Humber. RAPD-PCR for identifi- cation of Zoophthora radicans isolates in biological control of the potato leafhopper. J. Invertebr. Pathol. 65, pp. 1-9 (1995).
de Hoog, G. S., Sigier, L., Untereiner, W. A.. Kwon-Chung, K. J., Gueho, E., and Uijthof, J. M. J. Changing taxonornic concepts and their impact on nomenclatural stability. J. Med. Vet. Mycol. 32, pp. 113- 122 (1994).
Hosoki, T, D. Kimura, R. Hasegawa, T. Nagasako, K. Nishimoto, K. Ohta, M. Sugiyama and K. Haruki. Comparative study of chinese tree peony cultivars by random amplified polymorphic DNA (RAPD) analysis. Sci. Hortic, 70, pp. 67-72 (1997).
Iruela, M., J. Rubio, J. I. Cubero, J. Gil and T. Millán. Phylogenetic analysis in the genus Cicer and cultivated chickpea using RAPD and ISSR markers. Theor. Appl. Genet, 104, pp. 643-651 (2002).
.Ito, Y., and Hirano, T. The detremination of partial 18S ribosomal DNA
sequence of Cordyceps species. Lett. Appl. Microbiol. 25, pp. 239-242 (1997).
.Jaccard, P. Novelles recgerches sur la distribution florale. Bull. Soc. Vaud. Sci Nat. 44, pp. 223-270 (1908).
Jones, C. J., K. J. Edwards, S. Castaglione, M. O. Winfield, F. Sala, C. van de Wiel, G. Bredemeijer, B. Vosman, M. Matthes, A. Daly, R. Brettschneider, P. Bettini, M. Buiatti, E. Maestri, A. Malcevschi, N. Marmiroli, R. Aert, G. Volckaert, J. Rueda, R. Linacero, A. Vazquez and A. Karp. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol. Breed. 3, pp. 381-390 (1997).
Kao, S. S, Tsai, Y. S.,Yang. P. S., Hung, T. H. and Ko, J. L., Use of random amplified polymorphic DNA to characterize entomopathogenic fungi, Nomuraea spp., Beauveria spp., and Metarhizium anisopliae var. anisopliae, from Taiwan and China. Formosan Entomol. 22, pp. 125-134 (2002).
Kimura, M. A sample method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, pp. 111-120 (1980).
Kohn, L. M. Developing new characters for fungal systematics: An experimental approach for determining the rank of resolution. Mycologia 84, pp. 139-153 (1992).
Lanham, P. G., A. Korycinska and R. M. Brennan. Genetic diversity within a secondary gene pool for Ribes nigrum L. revealed by RAPD and ISSR markers. J. Hortic. Sci. 75, pp. 371-375 (2000).
Métais, I., C. Aubry, B. Hamon, R. Jalouzot and D. Peltier. Description and analysis of genetic diversity between commercial bean lines (Phaseolus vulgaris L.). Theor. Appl. Genet. 101, pp. 1207- 1214 (2000).
Millan, T., F. Osuna, S. Cobos, A. M. Torres and J. I. Cubero. Using RAPDs to study phylogenetic relationships in Rosa. Theor. Appl. Genet. 92, pp. 273-277 (1996).
Mugnai, L., Bridge, P. D., and Evans, H. C. A chemotaxonomic evaluation of the genus Beauveria. Mycol. Res. 92, pp. 199-209 (1989).
Nei, M. and W. H. Li. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc.Natl. Acad. Sci. U.S.A, 765, pp. 129-5273 (1979).
Nicolosi, E., Z. N. Deng, A. Gentile, S. La Malfa, G. Continella and E. Tribulato. Citrus phylogeny and origin of important species as investigated by molecular markers. Theor. Appl. Genet. 100, pp. 1155-1166 (2000).
Patzak, J. Comparison of RAPD, STS, ISSR and AFLP molecular methods used for assessment of genetic diversity in hop (Humulus lupulus L.). Euphytica, 121, pp. 9-18 (2001).
Pejic, I., P. A. Marsan, M. Morgante, V. Kozumplick, P. Castiglioni, G. Taramino and M. Motto. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor. Appl. Genet., 97, pp. 1248-1255 (1998).
Raina, S. N., V. Rani, T. Kojima, Y. Ogihara, K. P. Singh and R. M. Devarumath. RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44, pp. 763-772 (2001).
Rajaseger, G., H. T. W. Tan, I. M. Turner and P. P. Kumar. Analysis of genetic diversity among Ixora cultivars (Rubiaceae) using random amplified polymorphic DNA. Ann. Bot. 80, pp. 355-361 (1997).
Saitou, U. and Nei, M. The neighbor-joining methods: A new method for reconstructing phylogenetics tree. Molecular Biology and Evolution, 4, pp. 406-425 (1987).
Samson, R. A. Paecilomyces and some allied Hyphomycetes. Stud. Mycol.. 6, pp. 1-119 (1974).
Samson, R. A., Evans, H. C., and Latge, J.P. Atlas of entomopathogenic fungi. Springer-Verlag, the Netherlands, pp. 187 (1988)
Sanger, F., Nicklen, S., and Coulson, A. R. DNA sequencing with chaintermination inhibitors. Proc. Natl. Acad. Sci. 74, pp. 5463 (1977).
Staub, J. E., F. C. Serquen and M. Gupta. Genetic markers,map.construction,and
their application in plant breeding. HortScience, 31, pp. 729-741 (1996).
St Leger, R. J. Allee, L. L., May, B., Staples, R.C., and Roberts, D. W. World-wide distribution of genetic variation among isolates of Beauveria spp. Mycol. Res., 96, pp. 1007-1015 (1992).
Stiles, J. I., C. Lemme, S. Sondur, M. B. Morshid and R. Manshardt. Using randomly amplified polymorphic DNA for evaluating genetic relationships among papaya cultivars. Theor. Appl. Genet, 85, pp. 697-701 (1993).
Thompson, J. D., Higgins, D. G. and Gibson, J. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, pp. 4673-4680 (1994).
Tigano, M. S., and S. Aljanabi. RAPD analysis of Nomuraea rileyi. J. Invertebr. Pathol. 65, pp. 274-282 (2000).
Weising, K., H. Nybom, K. Wolff and W. Meyer. DNA fingerprinting in plant and fungi. CRC Press, Inc. USA, pp. 322 (1995).
White, T. J., Bruns, T., Lee, S., and Taylor, J. Amplification and direct..sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, Edited by Innis, M. A.,Gelfand, D. H., Sninsky, J. J., and White, T. J. San Diego: Academic Press, pp. 315-322 (1990).
Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. K. Rafalski, and S. V. Tingey. DNA polymorphisms amplified by arbitrary pimers are useful as genetic markers. Nucleic acids Res. 18, pp. 6531-6535 (1990).
Wolfe, M. S., and Schwarzpach, E.. The recent history of the evolution of barley powdery mildew in Europe. (1978).
Yamagishi, M., H. Abe, M. Nakano and A. Nakatsuka. PCR-based molecular markers in Asiatic hybrid lily. Sci. Hortic, 96, pp. 225-234 (2002).
Yu, K. and K. P. Pauls. Optimization of the PCR program for RAPD analysis. Nucleic Acids Res. 20, pp. 10 (1992).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔