跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/11 00:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李政修
研究生(外文):Cheng-Hsiu Li
論文名稱:應用雷達干涉進行數值地形之生成
論文名稱(外文):A Study on DEM Generation with InSAR technology
指導教授:黃怡碩黃怡碩引用關係
指導教授(外文):Yi-Shuo Huang
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:營建工程系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:80
中文關鍵詞:數值地形模型合成穿孔雷達合成穿孔雷達干涉
外文關鍵詞:Digital Terrain ModelsDTMSARInterferometry
相關次數:
  • 被引用被引用:3
  • 點閱點閱:452
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
合成孔徑雷達干涉技術(Synthetic Aperture Radar Interferometry, InSAR)是獲得數值地形的利器。近年來,合成孔徑雷達影像(Synthetic Aperture Radar, SAR)已廣泛地被運用於地球表面的探測且成效良好。InSAR 是藉由衛星所傳送的微波訊號與地形或地貌產生反射,利用兩組天線同時接收同一區域或利用同一顆衛星在不同時間接收同一區域所反射訊號;因為被反射的訊號到接收天線間的距離不同,致使訊號的相位產生改變。這被改變的相位,正是用來推估地面上相對高程之依據,進而建立所拍攝區域之數值地形。本研究採用 ERS-2 衛星所拍攝之合成孔徑雷達影像;ERS-2 衛星所發射與接收的微波,其波長較可見光的波長來的長且其所發射的微波較可見光有較佳的穿透性,使得微波能具體地描述地形的變化而不受到地表面植物生長情形的影響。
本研究以台灣北部區域為標的,進行合成孔徑雷達干涉技術生成數值地形模形,並探討影響干涉影像成像之因子。在研究中發現,在配對雷達影像像對過程中,除基線長度與時間間隔的因素外,兩影像的都普勒中心頻率差值亦為影響干涉影像成敗的重要因素;相差過大的都普勒中心頻率降造成干涉影像無法形成。
Synthetic aperture radar interferometry (InSAR) is a new technique to explore the ground truth of the Earth. In general, synthetic aperture radar primarily is designed for mapping the scattering properties of the Earth’s surface. Many physical and geometric parameters of the imaged scene are recorded in SAR image pixels. The ground truth can be explored by extracting those parameters from SAR imagery. Interferometric SAR has been widely applied to generate the digital terrain model of an imaged area, and previous research results have demonstrated that the digital terrain generated by applying InSAR can reach high accuracy. The basic principle of InSAR is to measure the phase differences of at least two SAR images that are obtained at the same orbit position with two antennas or at different orbit positions with the same antenna. The microwave emitted from SAR satellites has better penetration capability than other electromagnetic waves with shorter wavelengths have, such that the surface of the Earth can be precisely determined without vegetation disturbances. The research applies those SAR imagery collected with ERS2 satellite. Based on the Doris, Deflt Object-oriented Radar Interferometric Software, developed by Deflt University, the digital terrain model of the northern part of Taiwan, especially the Taipei area, is generated.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章、緒論 1
1.1、研究動機與目的 1
1.2、研究流程 2
1.3、論文架構 3
第二章、文獻回顧 6
2.1、合成孔徑雷達系統發展 6
2.2、雷達影像應用 8
2.2.1、地圖製作 8
2.2.2、林務監測 9
2.2.3、考古研究 9
2.2.4、海洋運用 9
2.2.5、環境監測 9
2.3、合成孔徑雷達干涉應用 10
2.4、相關文獻結論 12
第三章、理論介紹 14
3.1、雷達影像基本原理 14
3.2、影像解析能力 16
3.2.1、距離解析力(Range Resolution) 16
3.2.2、方位解析力(Azimuth resolution) 17
3.3、合成孔徑雷達原理 18
3.4、幾何變形的影響 20
3.5、合成孔徑雷達干涉原理 21
3.5.1、背景概述 21
3.5.2、InSAR 成像幾何原理 22
3.6、InSAR 影像生成流程 26
3.6.1、影像套合(Image Registration) 26
3.6.1.1、粗糙套合與細緻套合 28
3.6.1.2、重新取樣(Re-sampling) 30
3.6.2、產生干涉圖像(Interferogram Generation) 31
3.6.2.1、共軛複數相乘(Complex Conjugate Multiplication) 31
3.6.2.2、多觀點平均(Multi-Looks Average) 32
3.6.3、去除地表效應 33
3.6.4、一致性影像(Coherence Image) 34
3.6.5、干涉條紋影像濾波 34
3.6.6、相位還原(Phase Unwrapping) 35
3.6.7、DTM 生成 39
第四章、實驗成果與討論 41
4.1、研究區域選定 42
4.2、研究影像選擇 43
4.2.1、影像格式 44
4.2.2、基線長度選擇 45
4.2.3、時間間隔選擇 46
4.3、軟體介紹 47
4.3.1、軟體背景 47
4.3.2、軟體處理流程 48
4.4、干涉成果 51
4.4.1、影像讀取 51
4.4.2、影像套合 51
4.4.3、相位濾波 57
4.4.4、干涉影像生成 57
4.4.5、相位還原 58
4.5、成果討論 65
4.5.1、各組像對成果討論 65
4.5.2、精密軌道資料獲得 69
4.5.3、都普勒中心頻率選擇 69
第五章、結論與建議 71
5.1、結論 71
5.2、建議 72
參考文獻 74
一、英文部分:
Alaska SAR Facility, “Scientific SAR User’s Guide”, Alaska SAR Facility, 1993.
Alberti, G., Esposito, S., and Vetrella, S., “The Vesuvius DEM: a test case for the TOPSAR system.”, Proc. of the Final Workshop “MAC-Europe 1991”, 1994.
Baran, I., Stewart, M. P., Kampes, B. M., Perski, Z., and Lilly, P., “A Modification to the Goldstein Radar Interferogram Filter.”, Ieee Transactions On Geoscience And Remote Sensing, Vol.41, No.9, pp.2114-2118, 2003.
Bernhard, R., Eineder, M., Roth, A., and Bamler, R., “The shuttle radar topography mission - a new class of digital elevation models acquired by spaceborne radar.”, ISPRS Journal of Photogrammetry & Remote Sensing, Vol.57, No.4, pp.241-262, 2003.
Carnec, C., and C. Delacourt, “Three years of mining subsidence monitored by SAR interferometry, Gardanne, France.”, Journal of Applied Geophysics, Vol.43, pp.43-54, 2000.
Chen, C. W., Howard A., and Zebker, H. A., “Phase Unwrapping for Large SAR Interferograms: Statistical Segmentation and Generalized Network Models.”, Ieee Transactions On Geoscience And Remote Sensing, Vol.40, No.8, 2002.
Curlander J. C., and McDonough R. N., “Synthetic aperture radar: systems and signal processing.”, John Wiley & Sons, Inc, New York, U.S, 1991.
Cusack R., Huntley J. M., and Goldrein H. T., “Improved noise-immune phase unwrapping algorithm.”, Applied Optics, Vol.34, No.5, pp.781-789, 1995.
ERDAS , “ERDAS User’s Guide”, ERDAS, 2002.
Flynn, T. J., “Phase Unwrapping Using Discontinuity Optimization.”, IEEE, Vol.1, pp.80-82, 1998.
Gabriel, A. K., and Goldstein, R. M., “Crossed Orbit Interferometry: Theory and Experimental Results from SIR-B.”, International Journal of Remote Sensing, Vol.9, No.5, pp.857-872, 1988.
Gabriel, A. K., Goldstein, R. M., and Zebker, H. A., “Mapping Small Elevation Changes over Large Areas: Differential Radar Interferometry.”, Journal of Geophysical Research, Vol.94, No.7, pp.9183-9191, 1989.
Ge, L., Chang, H. C., Qin, L., Chen, M. H., and Rizos, C., “Differential radar interferometry for mine subsidence monitoring.”, 11th FIG Symposium on Deformation Measurements, 2003.
Ghiglia, D. C., and Pritt, M. D., “Two-Dimensional Phase Unwrapping: Thery Algorithm, and software.”, John Wiley & Sons, Inc, New York, U.S, 1998.
Goldstein, R. M., Zebker, H. A., and Werner, C., “Satellite radar interferometry: two-dimensional phase unwrapping.”, Radio science, Vol.23, No.4, pp.713-720, 1988.
Graham, L.C., “Synthetic Interferometric Radar for Topographic Mapping.”, Proceedings of the IEEE, Vol.62, pp.763-738, 1974.
Gupta R. P., “Remote sensing geology.”, Springer-Verlag, New York ,U.S, 1991.
Hanssen, R., “Radar Interferometry:Data Interpretation and Error Analysis.”, Kluwer Academic Publisher, Dordrecht, N.L, 2001.
Jarosz, A., and Shepherd, L., “Is SAR interferometry able to detect slope deformations of open pit mines?”, National Mine Surveying Conference, 2002.
Kampes, B., and Usai, S., “Doris: the Delft Object-oriented Radar Interferometric Software”, International Symposium on Operationalization of Remote Sensing, Enschede, Netherlands, 1999.
Kampes, B., Hanssen, R., Perski, Z., “Radar interferometry with public domain tools.”, FRINGE 2003, Frascati, Italy, 2003.
Liang, L. S., Wang, C. T., Chen,K. S., and Hou, C. S., ” A Study On Differential Interferometry in Subsidence”, Proceedings of the fourth groundwater resource and water quality protection, pp. 191-195, 2001.
Jing Juan, L., and Huadong, G., “Multifrequency and multipolarization radar data for estimation of forest volume over the Zhaoqing area of southern China.”, Canadian Journal of Remote Sensing, Vol.24, No.3, pp.240-245, 1998.
JPL, 2003. Shuttle Radar Topography Mission. National Aeronautics and Space Administration .(URL:http://www2.jpl.nasa.gov/srtm//).
Lillesand, T. M., and Kiefer, R. W., “Remote Sensing and Image Interpretation.”, John Wiley & Sons, Inc , New York, U.S, 1994.
Lin, Q., Vesecky, J. F., and Zebker H. A., “Topography Estimation With Interferometric Synthetic Aperture Radar Using Fringe Detection.”, IEEE Geoscience and Remote Sensing Symposium, Vol.4, pp.2173-2176, 1991.
Lin, Q., Vesecky, J. F., and Zebker H. A., “New Approaches in Interferometric SAR Data Processing.”, IEEE Transactions on Geoscience and Remote Sensing, Vol.30, No.3, pp.560-567, 1992.
Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Fiegl, K., and Rabaute, T., “The Displacement Field of The Landers Earthquake Mapped By Radar Interferometry.”, Nature, Vol.364, pp.138-142, 1993.
Massonnet, D., Briole, P., and Arnaud, A., “Deflation of Mount Etna monitored by spaceborne radar interferometry.”, Letter To Nature, Vol.375, pp.567-570, 1995.
Murakam, M., Tobita, M., Fujiwara, S., Saito, T., andMasaharu, H., “Coseismic crustal deformations of 1994 Northridge, California, earthquake detected by interferometric JERS 1 synthetic aperture radar”, Journal of Geophysical Research, Vol.101, No.4, pp.8605-8614, 1996.
Raucoules, D., Maisons, C., Carnec, C., Ste´phane., Le Mouelic., King, C., and Hosford, S., “Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France) Comparison with ground-based measurement.”, Remot Sensing of Environment, Vol.88, pp.468-478, 2003.
Rogers, A. E., and Ingalls, R. P., “Venus: Mapping the Surface Reflectivity by Radar Interferometry”, Science, Vol.165, pp.797-799, 1969.
Rosen, P. A., et al., “Synthetic Aperture Radar Interferometry”, Proceedings of the IEEE, Vol.88, No.3, pp.333-382, 2000.
Rumsey, H. C., Morris, G. A., Green, R. R., and Goldstein, R. M., “A Radar Brightness and Altitud e Image of a Portion of Venus.”, Icarus, Vol.23, pp.1-7, 1974.
Solaas, G. A., and Gatelli, F., “Initial testing of ERS Tandem data quality for InSAR applications; Examples from Taiwan, Madagascar, Zaire, Ivory Coast, Mali and Greenland.”, ESA workshop on Applications of ERS SAR Interferometry, 1996.
Strozzi, T., and Wegmuller, U., “Land Subsidence in Mexico City Mapped by ERS Differential SAR Interferometry.”, IEEE Trans. Geosci. Remote Sensing, pp.1940-1942, 1999.
Suga, Y., Takeuchi, S., Ogura, Y., Chen, A., Ogawa, M., Konishi, R., and Yonezawa, C., “Application of ERS-2/SAR Data for the 1999 Taiwan Earthquake.”, Advanced Space Research”, Vol.28, No.1, pp.155-163, 2001.
Tadono, T., “Development of a SAR algorithm for soil roughness.”, JSCE Journal of Hydroscience and Hydraulic Engineering, Vol.18, No.1, pp.29-38, 2000.
Tarayre, H., and Massonnet, D., “Atmospheric propagation heterogeneities revealed by ERS-1 Interferometry.”, Geophysical Research Letters, Vol.23, pp.989-992, 1996.
USGS ,2003. Shuttle Radar Topography Mission Home page. U.S. Geological Survey.(URL:http://srtm.usgs.gov/index.html).
Wang, J. R., “The SIR-B observations of microwave dependence on soil moisture, surface roughness, and vegetation covers.”, IEEE Trans. Geosci. Remote Sensing, Vol.24, pp.510-516, 1986.
Zebker, H. A., and Goldstein, R. M., “Topographic mapping from interferometry synthetic aperture radar observations.”, Journal of Geophysical Research, Vol.91, No.5, pp.4993-4999, 1986.
Zebker, H. A., Werner, C. L., Rosen, P. A., and Hensley, S., “Accuaray of Topograhic Maps Derived From ERS-1 Interferometric Radar.”, IEEE Transactions on Geoscience and Remote Sensing, Vol.32, No.4, pp.823-836, 1994.
Zisk, “A New Earth-based Radar Technique for the Measurement of Lunar Topography”, Moon, Vol.4, pp.296-306, 1972.

二、中文部份:
王志添、梁隆鑫、陳錕山、陳哲俊,「雷達差分干涉法應用於地震後地表變形研究」,第19屆測量學術及應用研討會,第 741-750 頁,2000。
呂建興,「使用三軌跡法與 ERS 資料偵測台灣都市地區地貌變化」,碩士論文,國立成功大學,台南,2001。
李周衡,「利用SAR衛星影像研究SULU SEA非線性內波之發源及演變」,碩士論文,國立台灣海洋大學,台北,2001。
林正賓,「干涉合成口徑雷達影像套合」,碩士論文,國立交通大學,新竹,1997。
林唐穩,「南海北部內波特性之研究」,碩士論文,國立台灣大學,台北,2001。
張中白、王志添、王皓正、陳錕山,「應用雷達差分干涉法監測都會型地表變形:以中壢工業區為例」,航測及遙測學刊,九卷,第三期,第 9-14 頁,2002。
陳卉瑄,「差分合成孔徑干涉雷達應用於偵測集集地震地形變之研究」,碩士論文,國立成功大學,台南,2001。
陳彥甫,「利用合成孔徑雷達(SAR)探查船隻訊息」,碩士論文,國立台灣大學,台北,1998。
陳鴻緒,「使用 ERS 資料與 SAR 干涉技術在臺灣地區求定 DEM 之實務探討」,碩士論文,國立成功大學,台南,2001。
陳鷹、于晶濤,「干涉合成孔徑雷達複數影像匹配方法研究」,中國科技論文在線,2001。
曾煥君、王志添、許明光、陳錕山,「合成口徑雷達衛星影像應用於颱風時河道狀態之監測」,航測及遙測學刊,八卷,第四期,第 83-97 頁。
劉國祥、丁曉利、陳永奇、李志林,「極具潛力的空間對地觀測新科技-合成孔徑干涉雷達」,中國科學院資源環境科學資訊中心,2000。
蔡宜庭,「應用合成孔徑干涉雷達於阿公店水庫集水區侵蝕率之估計」,碩士論文,國立成功大學,台南,2004。
謝嘉聲、史天元,「以雷達干涉偵測地表變形之研究」,第廿一屆測量學術及應用研討會,一卷,第 471-478 頁,2002。
嚴晟瑋、蔡展榮,「合成孔徑雷達干涉測量法-相位復原技術之分析」,第廿三屆測量學術及應用研討會,一卷,第 225-232 頁,2004。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top