|
[1]朱富春,股價分析,聯經出版有限公司,民國67 年。 [2]杜金龍,技術分析在台灣股市應用訣竅,金錢文化,民國87 年。 [3]Ahn,B.S, S.S Cho,C.Y Kim, “The integrated methodology of rough set and artificial neural network for business failure prediction”, Expert System With Applications 18(2000) 65–74 [4]Baltzersen, J.K., “An attempt to predict stock market data:a rough sets approach.” Diploma Thesis, Knowledge Systems Group, Department of Computer Systems and Telematics,The Norwegian Institute of Technology, University of Trondheim(1996). [5]Bazan, J.G., Skowron, A., Synak, P., “Market data analysis: A rough set approach.”,ICS Research Reports ,Warsaw University of Technology(1994). [6]Dimitras,A.I, R.Slowinski,R.Susmaga,C.Zopounidis”, “Business failure prediction using rough set”,European Journal of Operational Research 114 (1999) 263–280. [7]Dimitras, A.I., Slowinski, R., Susmaga, R., Zopounidis, C., “Business failure prediction using rough sets.” European Journal of Operational Research 114, (1999) 263–280. [8]Dimitras, A.I., Zanakis, S.H., Zopounidis, C., “A survey of business failure with an emphasis on prediction methods and industrial applications.”, European Journal of Operational Research 90 (1996) 487–513. [9]Golan, R., “Stock market analysis utilizing rough set theory.”,Ph.D. Thesis, Department of Computer Science, University of Regina,Canada(1995). [10]Greco, S., Cascio, L.S., Matarazzo, B., “Rough set approach to stock selection: An application to the Italian market.” In: Bertocchi, M., Cavalli, E., Komlosi, S. (Eds.),Modelling Techniques for Financial Markets and Bank Management. Physica-Verlag, Heidelberg,(1996)192–211. [11]Hashemi, R.R., L.A. Le Blanc, C.T. Rucks, A. Rajaratnam,“A Hybrid Intelligent System for Predicting Bank Holding Structures”,European Journal of Operational Research vol.109, (1998)390-402. [12]I. Beltzer Abraham, Tadanobu Sato,“Neural classification of finite elements” , Computers and Structures ,81 , (2003)2331–2335. [13]Kim, K.J., “Financial time series forecasting using support vector machines”, Neur computing,55, (2003)307-319. [14]Khoo,Li-Pheng, Lian-Yin Zhai, “A prototype genetic algorithm-enhanced rough set-based rule induction system”, Computer in Industry 46,(2001) 95–106. [15]Kohonen, T.. “Self-organized formation of topologically correct feature maps”. Biological Cybernetics, 43, (1982)59-69. [16]Li,Renpu, Zheng-ou Wang , “Mining classification rules using rough sets and networks”, European Journal of Operational Research 157,(2004) 439–448. [17]Mrozek, A., Skabek, K., “Rough sets in economic applications”, In: Polkowski, L., Skowron, A. (Eds.), “Rough Sets in Knowledge Discovery”, vol. 2. Physica-Verlag,Wurzburg,(1998)238–271,Chapter 13. [18]Pawlak,Zdzislaw , “Rough Sets”, International Journal of Computer and Information Science, Vol. 11, No. 5,(1982)341-356. [19]Ruggiero, M., “Rules are made to be traded.”, AI in Finance (Fall),(1994)35–40. [20]Ruggiero, M., “How to build a system framework.”,Futures 23,(1994)50–56. [21]Shawe-Taylor,John, John C. Platt, Nello Cristianini,” Large Margin DAGs for Multiclass Classification”, S.A. Solla, T.K. Leen and K.-R. M¨uller (eds.), (2000)547–553, MIT Press. [22]Shen, Lixiang, Han Tong Loh, “Apply rough set to market timing decisions”,Decision support systems , (2004)583–597. [23]Skalko, C., “Rough sets help time the OEX.” Journal of Computational Intelligence in Finance 4(6), (1996)20–27. [24]Slowinski, R., Stefanowski, J.,“Rough classification with valued closeness relation. In: Diday, E. et al. (Eds.), New Approaches in Classification and Data Analysis”. Springer,Berlin, (1994)482–488. [25]Slowinski, R., Zopounidis, C., “Rough-set sorting of firms according to bankruptcy risk.”, In: Paruccini, M. (Ed.), Applying Multiple Criteria Aid for Decision to Environmental Management. Kluwer Academic Publishers, Dordrecht,(1994)339–357. [26]Slowinski, R., Zopounidis, C., “Application of the rough set approach to evaluation of bankruptcy risk. International Journal of Intelligent Systems in Accounting:”, Finance & Management 4(1),(1995)27–41. [27]Tay,Francis E.H, Lixiang Shen, “Economic and financial prediction using rough set model”, European Journal of Operational Research 141(2002) 641–659. [28]Tay, F.E.H., L.J. Cao, “Application of support vector machines in financial time series forecasting”, OMEGA, 29, (2001)309- 317. [29]Thissen, U., R. Brakel, A.P. Weijer, W.J. Melssen and L.M.C. Buydens, “Using support vector machines for time series prediction,” Chemometrics and Intelligent Laboratory Systems, 69,(2003)35-49. [30]Trafalis, T. B. & Ince, H. Y., “Support Vector Machine for Regression and Application to Financial Forecasting. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks”, IEEE Computer Society, Vol. 6, (2000)348-353. [31]Ziarko, W., Golan, R., Edwards, D., “An application of datalogi c/R knowledge discovery tool to identify strong predictive rules in stock market data.”, In: Proceedings of AAAI Workshop on Knowledge Discovery in Databases,Washington,DC,(1993) 89–101. [32]Zheng,Zheng, Guoyin Wang, Yu Wu, “Object’s Combination Based Simple Computation of Attribute Core”, Proceedings of the 2002 IEEE, International Symposium on Intelligent Control, Vancouver, Canada, Oct. 27-30,(2002)514-519.
|