|
參考文獻
[1]Dawood, N. N. (1993). “Knowledge elicitation and dynamic scheduling using a simulation model. An application to the precast manufacturing process.” Proceedings of the Civil-Comp93, Part 4: Knowledge Based Systems for Civil and Structural Engineering, 73 [2]Chan, W. T. and Hu, H. (2002a). “Constraint programming approach to precast production scheduling.”Journal of Construction Engineering and Management, ASCE 128(6),513-521. [3]Chan, W. T. and Hu, H. (2002b). “Production scheduling for precast plants using a flow shop sequencing model.” Journal of Computing in Civil Engineering, ASCE 79(17), 1605-1616. [4]Leu, S. S. and Hwang, S. T. (2001). “Optimal repetitive scheduling model with shareableresource constraint.”Journal of Construction Engineering and Management, ASCE 127(4),270-280. [5]Palmer, D.S. (1965) Sequencing jobs through a multi-stage process in the minimum total time – A quick method of obtaining a near optimum. Operations Research Quarterly,16(1), 101–7. [6]Gupta, J.N.D. (1971) A functional heuristic algorithm forthe flowshop scheduling problem. Operational Research Quarterly, 22(1), 39–47. [7]Campbell, H.G., Dudek, R.A. and Smith, M.L. (1970) A heuristic algorithm for the n job, m machine sequencing problem. Management Science, 16(10), 630–7. [8]Benjaoran, V., Dawood, N., and Hobbs, B. (2005). “Flowshop scheduling model for bespokeprecast concrete production planning.”Journal of Construction Management and Economics, 23(1), 93-105. [9]Cohon, J. L. (1978), Multiobjective Programming and Planning, New York: Academic Press. [10]Goldberg, D.E. (1989), “Genetic Algorithms in Search, Optimization, and Machine Learning”, Addison-Wesley, Reading, Mass,. [11]Murata, T. and H. Ishibuchi(1995), “MOGA: Multi-Objective Genetic Algorithms,” Proceedings of 2nd IEEE International Conference on Evolutionary Computation, pp.284-294 [12]Murata, T. and H. Ishibuchi(1996), “Positive and Negative Combination Effects of Crossover and Mutation Operators in Sequencing Problems,” Proceedings of IEEE International Conference on Evolutionary Computation, pp.170-175. [13]Ishibuchi, H. and H. Murata,(1998) “Multi-Objective Genetic Local Search Algorithm and Its Applications to Flowshop Scheduling,” IEEE Transactions on SMC, 28, pp.392-403,. [14]Gao, Y., L. Shi, and P. Yao (2000), “Study on Multi-Objective Genetic Algorithm”, Proceedings of 3rd World Congress on Intelligent Control and Automation, pp. 646-650 [15]Sule, D. R.(1996), Industrial Scheduling, PWS. Publishing Company, 63-64. [16]Johnson, S. M.(1954), “Optimal two- and three-stage production schedules with set-up times included”, Naval Research Logistics Quarterly, Vol.1, 61-68, [17]Coffman, E.G.,JR., (1976), “Computer and Job-shop Scheduling Theory”, Wiley, New York. [18]Cochran, J.K., Horng, S.M. and Fowler, J.W. (2003) “A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. ” Computers and Operations Research, 30(7), 1087–102 [19]Grefenstette, J. J.(1986) “Optimization of Control Parameters for Genetic Algorithms,” IEEE Transactions on Systems, man & cybernetics, pp.122-128
[20]Chang, P. C., J. C. Hsieh, and S. G. Lin(2002)“The Development of Gradual Priority Weighting Approach for the Multi-Objective Flowshop Scheduling Problem,” International Journal of Production Economics, 79(3), pp.171-181. [21]Schaffer, J. D.; A. Richard, L. Caruana; J. Eshelman, and D. Rajarshi (1989) “A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization. ”, The 3rd International Conference on Genetic Algorithms and Their Applications, pp51-60. [22]Kaige S., T. Murata, H.Ishibuchi,(2003)”Performance evaluation of memetic EMO algorithms using dominance relation-based replacement rules on MOO test problem,” IEEE international conference on system,man and cybernetics,Vol. 1, pp14-19 [23] 黃少廷,預鑄工廠生產排程最適化模式之探討,國立台灣科 技大學營建工程所碩士論文,民國88年。 [24] 林我聰,現場排程專家系統-應用個體導向技術建立之研究, 資訊與電腦公司出版,民國83年。 [25] 王治元,智慧型基因演算法於多目標排程之發展與應用 – 以 PCB鑽孔作業為例,元智大學工業工程所碩士論文,民國 93年。
|