跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 19:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李嘉馨
研究生(外文):Chia-Hsin Li
論文名稱:電子高壓靜電誘導裝置貯藏對吳郭魚鮮度與品質之影響
論文名稱(外文):Effect of Electrostatic Field Induced Device Storage on Freshness and Quality of Tilapia
指導教授:柯文慶柯文慶引用關係
指導教授(外文):Wen-Ching Ko
學位類別:碩士
校院名稱:大葉大學
系所名稱:生物產業科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:73
中文關鍵詞:電子高壓靜電誘導裝置吳郭魚鮮度與品質
外文關鍵詞:electrostatic field induced devicetilapiafreshness and quality
相關次數:
  • 被引用被引用:9
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以鮮活吳郭魚為材料,重擊犧牲後以完整全魚和經三片取肉、絞細、分裝後之絞肉兩種形態,分別置於附有電子高壓誘導靜電裝置(electrostatic field induced device; EFID)之 4℃ 冷藏庫(E group)及控制同溫之一般冷藏庫(R group),比較兩方式貯藏期間魚體外觀與魚肉鮮度品質之變化。所得結果如下:
1. 全魚在貯藏期間,僵直期後魚體色澤逐漸呈現褐色,氨臭味亦增加,眼部則呈現混濁現象,達相同劣化程度之時間,R 組約四天,E 組則可延至六天。
2. 貯藏期間魚肉因糖解作用 pH 呈現先降後升的趨勢,R 組與 E 組分別在第六天及第七天時,降至最低後上升。
3. 魚肉 VBN 含量及 K 值均隨貯藏時間的延長而增加,R 組與 E 組分別在第六天及第十天時 VBN 含量超過衛生署所訂之標準;K 值方面,R 組第四天為 71.62%,E 組至第七天方為 61.70%,顯示 EFID 具延緩魚肉生化品質劣化之作用。
4. 貯藏期間魚肉色澤變化,R 組與 E 組魚肉之 Hunter L 值變化不大;但 a 值及 b 值皆隨著貯藏時間的增加而呈現上升的趨勢,R 組上升速率較 E 組快。
5. 總生菌數方面,R 組貯藏至第六天時,總生菌數達 3.04×106 CFU/g meat,已超過衛生署所訂衛生標準,而 E 組至第八天僅為 2.4×105 CFU/g meat,顯示 EFID 抑菌之效果。
6. 肌肉保水力方面,兩組保水力皆隨著貯藏時間的增加而下降。E 組下降速率較 R 組緩慢。
7. 魚肉肌動凝蛋白 Ca-ATPase 活性均隨貯藏時間延長而下降,R 組至第六天活性為 0.401 μmol Pi/min × mg protein,E 組至第八天活性方為 0.417 μmol Pi/min × mg protein。
8. 魚肉鹽溶性及水溶性蛋白溶解度在貯藏前期呈下降現象,但 R 組與 E 組分別在第四天及第五天時,降至最低後再上升,此應與蛋白質裂解、變性有關。
9. 貯藏魚肉經加鹽、擂潰、加熱製成煉製品,兩組之凝膠強度因酵素作用呈現先減後增的趨勢;而熱凝膠之色澤變化則與絞肉之結果相似。
10. EFID 對吳郭魚貯藏期間鮮度與品質之保持,無論生化學、微生物指標及肌肉特性的改變均有顯著正面影響,綜合言之,EFID 約可延長 20~30% 的保鮮期限。
Live tilapia (Orechromis niloticus) immediately killed were used as raw materials. Two types round fish and crushed meat prepared after three pieces filleting and crushing of the round fish were stored in a 4℃ refrigerator equipped with electrostatic field induced device (EFID, E-group) to investigate the changes in freshness and quality. Storage in a common refrigerator controlled at the same temperature was used as the contrast (R-group). The results obtained were as follows:
1. Color of the round fish off rigor gradually changed from grey-black to brown. Ammonia odor developed and the eyes became turbid. Similar deterioration was shown at the 4th and 6th day for R-group and E-group, respectively.
2. pH of the meat decreased, subsequently increased during storage. This phenomenon was concerned in glycolysis. The critical time appeared at the 6th for R-group and 7th day for E-group.
3. Both VBN and K value of the meat increased with increasing storage period. VBN exceeded the hygienic standard at 6th and 10th day for R-group and E-group, respectively, while K value reached 71.6% for R group and 61.7% for E group. EFID showed obvious retardation on freshness decrease.
4. Hunter L was not obviously changed, but Hunter a and b values increased for both of R and E-group during storage. The R group moved fast than E group.
5. On total plate counts, R group reached 3.04 x 106 CFU/g meat at the 6th day, exceeding the sanitary standard. E group still maintained the counts under 106 (2.4 x 105 CFU/g meat) at the 8th day, obviously showed inhibition of microorganisms.
6. Water holding capability of tilapia meat decreased with extending storage time for both R and E groups. E group was slow in decrease.
7. The activity of actomyosin Ca-ATPase decreased during storage. Similar activities were observed for R group at the 6th day (0.401 μmol Pi/min × mg protein) and E group at the 8th days(0.417 μmol Pi/min × mg protein).
8. Solubility of salt-soluble and water-soluble proteins of the fish meat decreased to the minimum values for R group at the 4th day and E group at the 5th day. The extraction rate was reversed during the subsequent storage in connection with denaturation and decomposition of proteins.
9. Gels prepared from the stored meat via processes of salt adding, grinding and heating showed decrease and subsequent increase in gel strength. This probably related to the action of endogenous enzymes. Changes in color for the thermally induced gels were similar to that of crushed meat.
10. EFID was a practicable device for tilapia preservation based on positive evaluation of biochemical indices, microorganism inhibition and muscle properties. The self life was prolonged by 20-30%.
封面內頁
簽名頁
授權書iii
中文摘要iv
英文摘要vi
誌謝viii
目錄ix
圖目錄xii
表目錄xiv

第一章 緒言1
第一節 研究動機1
第二節 研究背景2
一、吳郭魚生產現況2
第二章 文獻回顧3
第一節 水產物鮮度鑑定法3
一、感官鑑定法3
二、化學鑑定法4
三、物理鑑定法8
四、微生物鑑定法8
第二節 水產物保鮮法8
一、冰藏法9
二、冷藏法9
三、凍藏法9
第三節 電子高壓靜電誘導裝置之介紹10
一、原理10
二、外觀及保存食材之特性10
三、EFID 應用上之優點13
四、EFID與傳統技術在食材保鮮效果之比較14
第三章 材料與方法18
第一節 實驗材料18
第二節 實驗試藥18
第三節 電子高壓靜電誘導裝置20
第四節 實驗方法20
一、實驗設計20
二、外觀評鑑26
三、鮮度測定26
(一) pH 之測定26
(二) 揮發性鹽基態氮之測定26
(三) K 值之測定28
(四) 總生菌數之測定28
(五) 魚肉色澤之測定29
四、肌肉特性之測定29
(一) 保水力之測定29
(二) 蛋白質溶解度之測定30
(三) 電泳試驗31
(四) 肌動凝蛋白 Ca-ATPase 活性及無機磷測定33
(五) 魚漿熱凝膠之製備35
(六)魚漿熱凝膠強度之測定35
(七)魚漿熱凝膠色澤之測定35
第四章 結果與討論38
第一節 貯藏期間吳郭魚眼部外觀之變化38
第二節 貯藏期間吳郭魚鮮度之變化38
一、pH38
二、揮發性鹽基態氮42
三、K 值42
四、總生菌數45
五、魚肉色澤45
第三節 貯藏期間吳郭魚肌肉特性之變化48
一、保水力48
二、肌動凝蛋白 Ca-ATPase 活性52
三、蛋白質溶解度52
四、電泳分析55
五、凝膠強度60
六、凝膠色澤60
笫五章 結論66
參考文獻67
中文部分
1. 太田靜行。1991。水產物の鮮度保持。筑波書局。東京。日本。
2. 齊藤恆內、內山均、梅本滋、河川俊治。1974。水產生物化學。食品學實驗書。p. 267-281。恆星社厚生閣。東京。日本。
3. 須山三千山、鴻巢章二。1987。水產食品學。p. 17-37。恆星社厚生閣。日本。東京。
4. 市川上行。1988。魚類類鮮度の判定恆數 K 值のガイドラインとオキジメ效果と關連について。New Food Iindustry 30(8): 22-26。
5. 中國國家標準。1982。冷凍魚類檢驗法。CNS 1451 N6029。經濟部中央標準局。台北。台灣。
6. 中國國家標準。1996 e。食品微生物之檢驗法—生菌數檢驗。CNS10890。經濟部中央標準局。台北。台灣。
7. 王博廉。2004。電子調變高壓變頻誘導裝置對食品的高壓電場解凍保鮮的方法。食品資訊,202:67-69。
8. 行政院農委會漁業署。1990。水產加工業現況。國立台灣海洋大學。基隆。台灣。
9. 行政院衛生署。1998。食字第87032655號公告修正。行政院衛生署。台北。台灣。
10. 行政院農委會漁業署。1998~2001。中華民國台灣地區漁業年報。台北。台灣。
11. 吳熊清、邱思魁。1996。水產食品學。國立編譯館。台北。台灣。
12. 邱萬敦。2002。漁獲物的保鮮與處理。翠柏林企業股份公司。台中。台灣。
13. 胡興華。1996。拓漁台灣。行政院農委會漁業署。台北。台中。
14. 徐國強。1998。高壓常溫貯藏吳郭魚肌肉之鮮度保持與加工適性。國立中興大學食品科學研究所碩士論文。台中。台灣。
15. 陳文騰。1999。生鮮吳郭魚在流通期間之品質變化與控制。國立中興大學食品科學研究所碩士論文。台中。台灣。
16. 郭塗註、黃錦華。1994。基本電學上冊。華興書局。台北。台灣。
17. 新井健一。1977。多獲性赤身魚の有效利用。水產學シリーズ35。恆星社厚生閣。日本。東京。
18. 賴滋漢、金安兒、柯文慶。1991。食品加工學(方法篇)第二章冷藏與冷凍。國立中興大學教務處出版組。台中。台灣。
19. 羅彥瑜。2005。米酒之製造及加速熟成對品質的影響。國立中興大學食品科學研究所碩士論文。台中。台灣。







英文部分
1. Bramsnaes, F. 1981. Maintaining the quality of frozen foods during distribution. Food Technol. 35: 38.
2. Chen, H. C., Moody, M. W., and Jiang, S. T. 1990. Changes in biochemical and bacteriological Quality of grass pawn during transportation by icing and oxygenating. J. Food Sci. 55: 670-673.
3. Connel, J. 1962. Changes in amount of myosin extractable from cod flesh during storage at -14℃. J. Sci. Food Agric. 13: 607-617.
4. Dyer, W. J., French, H. V., and Snow, J. M. 1950. Protein in fish muscle. 1. Extraction of protein fraction in flesh fish. J. Fish. Res. Board Can. 7: 585-593.
5. Fleming, S. E., Sosulski. R. W., Kilara. A. and Humbert. E. S. 1974. Viscosity and water absorption characteristics of slurries of sunflower and soybeen flours, concentrates and isolates. J. Food Sci. 39:188-191.
6. Gelman. A., Glatman. L., Drabkin. V., and Happaz. S. 2001. Effects of storage temperature and preservative treatment on shelf life of the pond-raised Freshwater fish, Silver perch (Bidyanus bidyanus). J. of Food Prot. 64: 1584-1591.
7. Gornall. A. G., Bardawill, C. T., and David, M. M. 1949. Determination of serum proteins by means of the biuret reactions. J. Biol. Chem. 177: 715-766.
8. Gram, L. 1991. Inhibition of mesophilic spoilage Aeromonas spp. On fish by salt, potassium sorbate, liquid smoke, and chilling. J. Food Prot. 54: 436-441.
9. Hermansson, A. M. 1978. Physico-chemical aspects of soy proteins structure formation. J. Texture Studies 9: 33-41.
10. Hultin, H. O. 1985. Characteristics of muscle tissue. In “Food Chemistry”, Fennema, O. R. Ed. p. 750. Marcel Dekker Inc., New York, USA.
11. Jiang, S. T., Wang, F. J., and Chen, C. S. 1989. Properties of actin and stability of the actomyosin reconstituted from milkfish (Chanos chanos) actin and myosin. J. Agric. Food Chem. 37: 1232-1235.
12. Kamal, M., Watabe, S., and Hashimoto, K. 1991. Postmortem muscles. Nippon Suisan Gakkaishi. 57: 1177-1184.
13. Katoh, N., Nozaki, H., Komatsu, L., and Arai, K. 1979. A new method for evaluation of the quality of frozen surimi from Alaska pollack relationship between myofibrillar ATPase activity and kamaboko forming ability of frozen surimi. Bull. Japan. Soc. Sci. Fish. 45: 1027-1032.
14. Ko, W. C. and Taguchi, T. 1995. Effect of pressure treatment on the gelation of walleye Pollack actomyosin and meat paste. J. Agric. Forestry 44: 57-66.
15. Ko, W. C. 1996. Efect of high pressure on gelation of meat paste and inactivation of actomyosin Ca-ATPase prepared from milkfish. Fisheries Sci. 62: 101-104.
16.Laura, P. and Gabriel, S. 1994. Influence of ice storage on ray (Raja clavata) wing muscle. J. Sci. Food Agric. 64: 9-18.
17. LeBlance, E. L., Leblance, R. J., and Gill. T. A. 1987. Effect of pressure processing on frozen stored muscle protein of Atlantic cod (Gadus mohua)fillets J. Food Prot. 11:209-235.
18. Liu, Y. M., Lin, T. S., and Lanier, T. C. 1982. Thermal denaturation and aggregation of actomyosin from Atlantic croaker. J. Food Sci. 47: 1916-1920.
19. MacDonald, G. A. and Lanier, T. C. 1994. Actomyosin stabilization to freeze-thaw and heat denaturation by lactate salts. J. Food Sci. 59: 101-105.
20. Martin, J. B. and Doty, D. M. 1949. Determination of inorganic phosphate. Anal. Chem. 21: 965.
21. Matsuda, Y. 1979. Influence of sucrose on the protein denaturation of lyophilized carp myofibrils during storage. Bull. Jap. Soc. Sci. Fish. 45: 573-579.
22. Matsumoto, J. J. 1979. Denaturation of fish muscle proteins during frozen storage. In“Protein at Low Temperature”, (Ed.), p. 205-224. By O. Fennema, ACS. Washington D.C.
23. Ohnishi, T., Gall, R. S., and Mayer, M. L. 1975. An improved assay of inorganic phosphate in the presence of extractable phosphate compound: application to the ATPase assay in the presence of phosphocreatine. Anal. Biochem. 69: 261-267.
24. Owusu-Anshah. Y. O. and Hultin, H. O. 1986. Chemical and physical changes in red hake fillets during frozen storage. J. Food. Sci. 51: 1402-1406.
25. Paredi, M., Mattio, N. V., and Crupkin, M. 1990. Biochemical properties of actomyosin of cold stored striated adductor muscle of Aulacomya ate rater (molina). J. Food Sci. 55:1567-1570.
26. Park, J. W. and Morrissey, M. T. 1994. The need for developing the surimi standard. “In Quality and Control Assurance for Seafood”, G. Sylvia, A Shriver, and M, T, Morrissey (Ed.). Oregon Sea Grant, Corvallis, OR.
27. Perez-villarreal, B. and Pozo, R. 1990. Chemical composition and ice spoilage of albacore (Thunnus alalunga). J. Food Sci. 55: 678.
28. Price, R. J., Melvin, E. F. and Bell, J. W. 1991. Postmortem changes in chilled round, bled and dessed albacoe. J Food Sci. 56: 318-321.
29. Roura, S. I. and Crupkin, M. 1995. Biochemical and functional properties of myofibrils from pre-and post-spawned hake (Merluccius hubbsi Marini) stored on ice. J. Food. Sci. 60:269-272.
30. Ryder, J. M. 1985. Determination of adenosine triphosphate and its breakdown products in fish muscle by high-performance liquid chromatography. J. Agric Food Chem. 33: 678-680.
31. Saito, T. and Arai. K. 1959. A new method for estimating the freshness of fish. Bull. Jap. Soc. Sci. Fish. 24: 749~750.
32. Schelef, L.A. and Jay, J.M. 1971. Hydration capacity as an index of shrimp microbial quality. J. Food Sci. 36: 994-997.
33. Seki, N., Ikade, M., and Narita, N. 1979. Changes in ATPase activity of carp myofibril during ice-storage. Bull. Jap. Soc. Sci. Fish. 46: 791-199.
34. Sigholt, T., Erikson, U., Rustad, T., Johansen, S., Nordtvedt, T. S. and Seland, A. 1997. Handling stress and storage temperature affect meat quality of farmed-raised Atlantic salmon (Slmo salar) J. Food Sci. 62: 898-905.
35. Sikorski, Z. E., Olley, J., and Kostuch, S. 1976. Protein changes in frozen fish. CRC Crit. Rev. Food Sci. Nutr. 8: 97-129.
36. Soottawat, B., Thomas, A. S. Michael, T, M., and Haejung, A. 1997. Physicochemical changes in Pacific whiting muscle proteins during iced storage. J. Food Sci. 62: 729-733.
37. Srikar, L.N. and Reddy, G.V.S. 1991. Protein solubility and emulsifying capacity in frozen stored fish mince. J. Sci. Food Agric. 55:447-453.
38. Stanley, D. W. 1983. Relation of structure to physical properties of animal material. In “Physical Properties of Foods.” M. Peleg, and EB. Bagley(Ed). p.157-206. AVI Publishing Compony Inc. Westport, CT. USA.
39. Taguchi, T., Kikuchi, K., Oguni, M., Tanaka, M., and Suzuki., K. 1978. Heat change of myosin B Mg-ATPase and “Setting” of fish meat paste.Bull. Japan. Soc. Sci. Fish. 44: 1363-1368.
40. Tejada, M., Careche, M., Torrejon, P., del Mazo, M. L., Solas, M. T., Carcia, M. L., and Barba, C. 1996. protein extracts and aggregates forming in minced cod (Gadus morhua)during frozen storage. J. Agric, Food Sci. 44:3308-3314.
41. Wanger, J. R. and Anon, M. C. 1986. Effect of frozen storage on protein denaturation in bovine muscle. Ⅱ. Influence in solubility, viscosity and electrophoretic behavior of myofibrillar protein. J. Food Technol. 2: 547-549.
42. Watanabe, A., Tsuneishi, E., and Takimoto. Y. 1989. Analysis of ATP and its breakdown products in beef by reversed-phase HPLC. J. Food Sci. 54: 1169-1172.
43. Watabe, S., Kamal,. M. and Hashimoto, K. 1991. Postmortem changes in ATP, creatine phosphate, and lactate in sardine muscle. J. Food Sci. 56: 151-153 & 171.
44. Weber, K and Osbron, M. 1969. The reliability of molecular weights determination by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244: 4406-4412.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top