跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 09:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳農恩
研究生(外文):Chen Nung-En
論文名稱:以幾丁聚醣製備奈米鉑粒子之研究
論文名稱(外文):Preparation Platinum Nanoparticles Using Chitosan
指導教授:凃耀國凃耀國引用關係
學位類別:碩士
校院名稱:大葉大學
系所名稱:生物產業科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:75
中文關鍵詞:幾丁聚醣氫氧化鈉奈米鉑
外文關鍵詞:chitosansodium hydroxidenanoplatinum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:403
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用幾丁聚醣具吸附金屬離子之能力與以氫氧化鈉為還原劑,將鉑奈米化之研究。首先分別將不同濃度幾丁聚醣酸溶液於不同濃度氫氧化鈉溶液中伴隨高速均質下製成16種鹼性幾丁聚醣懸浮液,再加入六氯化鉑溶液可製得幾丁聚醣比鉑單體莫耳比分別為1:1(CS1/Pt)、3:1(CS3/Pt)、5:1(CS5/Pt)、7:1(CS7/Pt)與pH值分別為12.3、13.5、13.8及14.3之幾丁聚醣-鉑複合懸浮液。利用分光光度計分析,得知隨著幾丁聚醣單體莫耳比與氫氧化鈉濃度增加可使鉑離子的還原反應加速。將製得之鹼性複合懸浮液以透析法除去游離離子後,以原子吸收光譜分析,得知隨著幾丁聚醣單體莫耳比增加,其鉑粒子回收率有增加之趨勢,以AEM分析得知隨著幾丁聚醣比鉑之單體莫耳比與氫氧化鈉濃度增加,會縮小鉑粒子生成之粒徑,此外中性複合物中鉑粒子之平均粒徑均小於5 nm。中性複合物經600℃裂解30分鐘可去除幾丁聚醣,而獲得鉑奈米粒子,並以FESEM觀察可得到直徑小於20 nm之鉑粒子。
This study is using the ability of chiotsan to absorb metal ion and reductant by NaOH to make platinum nanoparticles. Above all, the sixteen formulas of alkaline chitosan suspensions were prepared by dropping the various concentrations of chitosan acetate solutions into the various concentrations of NaOH aqueous with high-speed homogenizing, respectively. Then, the hexachloroplatinate aqueous solution were respectively acceded to alkaline chitosan suspension solutions, alkaline chitosan-Pt composite suspensions were synthesized. Which molar ratio of chitosan repeat unit number to Pt4+ were 1:1 (CS1/Pt), 3:1 (CS3/Pt), 5:1 (CS5/Pt) and 7:1 (CS7/Pt) and pH values were 12.3, 13.5, 13.8 and 14.3. UV-visible molecular absorption spectrometry revealed that to increase the concentration of NaOH and the molar ratio of chitosan repeat unit number can promote the reaction rate of reduction of platinum ion. After, dialysis was used to remove free ions from the alkaline composite suspensions, using atomic absorption spectrophotometer (AAS) to analysis the yields of platinum. We can know to increase the molar ratio of chitosan repeat unit number can increase the yields of platinum, to increase the concentration of NaOH can decrease the yields of platinum. Analytical electron microscope (AEM) micrographs of the neutral composite suspensions showed that platinum nanoparticle size decreased with increased the concentration of NaOH and the molar ratio of chitosan repeat unit number, In addition, all the mean diameter of platinum nanoparticle in the neutral composes were smaller than 5 nm. At 600 ℃ and during 30 min, pyrolysis was used to decompose chiotsan and to gain platinum nanoparticles. The emission scanning microscope (FESEM) micrographs of platinum nanoparticles obtained by pyrolysis showed that the mean sizes were smaller than 20 nm.
封面內頁
簽名頁
授權書iii
中文摘要iv
英文摘要v
致謝vi
目錄vii
圖目錄ix
表目錄xi


第一章 前言1
第二章 文獻回顧2
2.1 鉑的特性與應用2
2.2 幾丁質與幾丁聚醣3
2.2.1幾丁質與幾丁聚醣之分子結構3
2.2.2幾丁質與幾丁聚醣之製備方法6
2.2.3幾丁質與幾丁聚醣之特性7
2.2.4幾丁聚醣對金屬離子之應用8
2.3 奈米科技11
2.3.1奈米材料定義11
2.3.2奈米尺寸效應13
2.3.3奈米化技術13
2.3.4金屬奈米粒子之檢測方法16
2.3.5以還原法將鉑奈米化之相關研究17
第三章 材料與方法20
3.1 實驗材料20
3.2 實驗儀器21
3.3 實驗流程與製備方法22
3.3.1氯化鉑溶液之配製23
3.3.2幾丁聚醣懸浮液製備23
3.3.3幾丁聚醣-鉑複合物懸浮液製備24
3.3.4奈米鉑粒子之製備26
3.4 樣本分析26
第四章 結果與討論30
4.1鹼性幾丁聚醣-鉑複合物懸浮液製備過程之探討30
4.2幾丁聚醣吸附鉑粒子能力之探討39
4.2.1檢量線製作與樣本製備探討39
4.2.2產率分析與討論40
4.2.3流失原因之探討41
4.3中性幾丁聚醣-鉑複合物懸浮液之粒徑探討46
4.4奈米鉑粒子之製備與分析51
第五章 結論58
參考文獻59

圖目錄

圖2.1(a)纖維素、(b)幾丁質和(c)幾丁聚醣之分子結構5
圖2.2幾丁聚醣(A)分子內、(B)分子間與金屬離子螯合情形10
圖2.3奈米材料分為(a)奈米粒子;(b)奈米線;(c)奈米薄膜12
圖3.1實驗流程圖22
圖4.1幾丁聚醣-鉑複合物懸浮液之吸收光譜圖-1 33
圖4.2幾丁聚醣-鉑複合物懸浮液之吸收光譜圖-2 34
圖4.3幾丁聚醣-鉑複合物懸浮液之吸收光譜圖-3 35
圖4.4幾丁聚醣-鉑複合物懸浮液之吸收光譜圖-4 36
圖4.5不同pH值及幾丁聚醣比鉑之單體莫耳比對鉑離子還原反應完成之時間關係圖38
圖4.6 (A) 鹼性幾丁聚醣-鉑複合物之AEM分析及(B) 粒徑分析圖(樣本CS7/Pt C)42
圖4.7 鉑標準品的檢量線圖43
圖4.8不同莫耳比及pH製備之複合物懸浮液經透析後鉑產率之關係圖45
圖4.9 (A) 幾丁聚醣-複合物之AEM分析及(B) 粒徑分析圖(樣本CS1/Pt C)48
圖4.10幾丁聚醣-鉑複合物之電子繞射圖(A) CS3/Pt D,(B) CS7/Pt D49
圖4.11鉑粒子FESEM分析圖-1 52
圖4.12鉑粒子FESEM分析圖-2 53
圖4.13鉑粒子FESEM分析圖-3 54
圖4.14鉑粒子FESEM分析圖-4 55
圖4.15熱裂解製程之奈米鉑EDS分析圖(A)CS1/Pt A,(B)CS1/Pt D57

表目錄

表2.1幾丁質與幾丁聚醣產品之應用領域9
表2.2材料尺度之分類12
表2.3鉑粒子奈米化製備之相關研究18
表2.4幾丁聚醣穩定鉑與鈀奈米粒子之粒徑與分佈表19
表3.1幾丁聚醣-鉑複合懸浮液配方表25
表4.1不同pH值及幾丁聚醣比鉑之單體莫耳比對鉑離子還原反應完成之時間關係表37
表4.2不同莫耳比及pH值對鉑透析後產率之關係表44
表4.3中性複合物的鉑粒子粒徑分析表50
表4 . 4奈米鉑粒子粒徑分析表56
中文部份
1.林景正和賴宏仁。1999。奈米材料技術與發展趨勢。工業材料。153。95-101。
2.洪健龍。2004。材料奈米檢測技術。化工知訊商情2(8):8-15。
3.徐世昌。2001。生物性高分子-幾丁質與幾丁聚醣之介紹與應用。化工資訊。15(2):36-45。
4.郭清癸、黃俊傑和牟中原。2001,金屬奈米粒子的製造。物理雙月刊23(6):614-624。
5.許仁勇和談駿嵩。2001。利用壓縮流體製備高分子微米粒子。化工資訊。15(7):24-30。
6.陳鈺婉。2005。以幾丁聚醣製備奈米銀之研究。生物產業科技系碩士班碩士論文。大葉大學。24-46。
7.陳澄河。2003。蝦蟹殼傳奇。科學發展。369,63-67。
8.曾如玲和吳豐智。1997。幾丁聚醣與螯合劑競爭銅離子之研究。第二十二屆廢水處理技術研討會論文集:492-499。
9.張書銘。2004。支撐在活性碳上鉑-釕雙金屬觸媒的製備及鑑定。化學研究所碩士班論文。清華大學。4-13。
10.黃淑娟。2002。奈米粉體製程技術,化工資訊。16(4):34-38。
11.鄭文桐和黃山峰。2000。超微粒子分散技術與其應用概況。化工技術。8(4):174-190。
12.蔡金津。2001。奈米顆粒及薄膜之溶膠-凝膠技術。化工資訊。15(11):16-21。
13.賴明雄。1994。超微粒子的製備方法簡介。粉末冶金會刊。19(4):247-256。






















英文部份
1.Adlim, M., Bakar, M., Liew, A. K. Y. and Ismail, J. 2004. Synthesis of chitosan-stabilized platinum and Pallad ium nanoparticles and their hydrogenation activity. Journal of Molecular Catalysis A: Chemical. 212 : 141–149.
2.Babel, S. and Kurniawan, T. A. 2003. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials. 97 : 219-243.
3.Chen, C. W., Takezako, T., Yamamoto, K., Serizawa, T. and Akashi, M. 2000. Poly (N-vinylisobutyramide) - stabilized platinumn anoparticles: synthesis and temperature - responsive behavior in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 169 : 107-116.
4.Chen, C. W., Tano, D. and Akashi, M. 2000. Colloidal Platinum Nanoparticles Stabilized by Vinyl Polymers with Amide Side Chains: Dispersion Stability and Catalytic Activity in Aqueous Electrolyte Solutions. Journal of Colloid and Interface Science.225 : 349-358.
5.Debbaudt, A. L., Ferreira, M. L. and Gschaider, M. E. 2004. Theoretical and experimental study of M2t adsorption on biopolymers. III. Comparative kinetic pattern of Pb, Hg and Cd. Carbohydrate Polymers. 56:321-332.
6.Duff, D. G., Edwards, P. P. and Johnsonl, B. F. G. 1995. Formation of a Polymer-Protected Platinum Sol: A New Understanding of the Parameters Controlling Morphology. J. Phys. Chem. 99 : 15934-15944.
7.Guibal, E., Larkin, A., Vincent, T. and Tbin, J. M. 1999. Chitosan sorbents for platinum sorption from dilute solution. Ind. Eng. Chem. Res. 38 : 4011-4022.
8.He, B., Tan, J. J., Liew, K. Y. and Liu, H. 2004. Synthesis of size controlled Ag nanoparticles. Journal of Molecular Catalysis A: Chemical. 221 : 121-126.
9. Hirano, S. and Midorikawa, T. 1998. Novel method for the preparation of N-acylchitosan fiber and N – acylchitosan - cellulose ciber. Biomaterials. 19 : 293-297.
10.Huang, H., Yuan, Q. and Yang, X. 2004. Preparation and characterization of metal-chitosan nanocomposites. Colloids and Surfaces B: Biointerfaces. 39 : 31-37.
11.Ingelsten H. H., Bagwe, R., Palmqvist, A., Skoglundh, M., Svanberg, C., Holmberg, K. and Shahx, D. O. 2001. Kinetics of the Formation of Nano-Sized Platinum Particles in Water-in-Oil Microemulsions. Journal of Colloid and Interface Science. 241 : 104-111.
12.Kamiňski, W. and Morzejewska, Z. 1997. Application of chitosan membrances in separation of heavy metal ions. Separation Since and Technology.32(16) : 2659-2668.
13.Kim, H. and Chang, W. 1999. Preparation and photo- electrochemical behavior of polypyrrole with platinum nanoparticles. Synthetic Metals. 101:150-151.
14.Okuyama, K., Noguchi, K., Kanenari, M., Egawa, T., Osawa, K. 2000. Structural diversity of chitosan and its complexes. Carbohydrate Polymers. 41 : 237-247.
15.Park, I. W., Yoon, M., Kim, Y.M., Kim, Y., Yoon, H., Song, H.J., Volkov, V., Avilov, A. and Park, Y.J. 2003. Magnetic properties and microstructure of cobalt nanoparticles in a polymer film. Solid State Communications.126 : 385-389.
16.Ravi Kurmar, M. N. V. 2000. Review A review of chitin and chitosan applications. Reactive & Functional Polymers., 46, 1-27.
17.Rivadulla, J. F., Vergara, M. C., Blanco, M. C., Lo´pez-Quintela, M. A. and Rivas, J. 1997. Optical Properties of Platinum Particles Synthesized in Microemulsions. J. Phys. Chem. B. 101: 8997-9004.
18.Rochon, F. D.and Viorel B. 2004. Multinuclear NMR study and crystal structures of complexes of the types cis- and trans-Pt(amine)2I2. Inorganica Chimica Acta. 357 : 2218-2230.
19.Tang, Z., Geng, D. And Lu, G. 2005. Size-controlled synthesis of colloidal platinum nanoparticles and theiractivity for the electrocatalytic oxidation of carbon monoxide. Journal of Colloid and Interface Science. 287 : 159-166.
20.Tolaimate A., Desbrie`resb, J., Rhazia, M., Alaguic, A., Vincendond, M. and Votterod, P. 2000. On the influence of eacetylation process on the physicochemical characteristics of chitosan from squid chitin. Polymer. 41:2463-2469.
21.Vander Wal, R. L. 2000, Flame synthesis of substrate - supported metal-catalyzed carbon nanotubes. Chemical Physics Letters. 324 : 217-223.
22.Wang, C. B. and Yeh,C. T. 1998. Effects of particle size on the progressive oxidation of nanometer platinum by dioxygen. Journal of Catalysis. 178 : 450-456.
23.Wikins, D. E., Cheng, E. NG. and Peter, P. 1996. Cisplatin and low dose rate irradiation in cisplatin resistant and sensitive human glioma cells. Int. J. Radiation Oncology Bio. Phy. 36: 105-111.
24.Yadav, O. P., Palmqvist, A., Criuise, N.and Holmberg, K. 2003. Synthesis of platinum nanoparticles in microemulsions and their catalytic activity for the oxidation of carbon monoxide. Colloids and Surfaces A: Physicochem. Eng. Aspects. 221 : 131-134.
25.Yamamoto, Y., Miura, T., Nakae, Y., Teranishi, T., Miyake, M.and Hori, H. 2003. Magnetic properties of the noble metal nanoparticles protected by polymer. Physica B. 329–333 : 1183-1184.
26.Yang, J. M., Su, W. Y., Leu, T. L. and Yang, M.C. 2004. Evaluation of chitosan/PVA blended hydrogel membranes. Journal of Membrane. 236 : 39-51.
27.Yashima, M., Falk, L. K. L., Palmqvist, A. E. C.and Holmberg, K. 2003. Structure and catalytic properties of nanosized alumina supported platinum and palladium particles synthesized by reaction in microemulsion. J. Coll. and Inter. Sci. 268 : 348-356.
28.Yazawa, Y., Yoshida, H., Komai, S. and Hattori, T. 2002. The additive effect on propane combustion over platinum catalyst:control of the oxidation-resistance of platinum by theelectronegativity of additives. Applied Catalysis A: General. 233 : 113-124.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top