跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 20:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張冠群
研究生(外文):CHANG KUAN CHUN
論文名稱:側撞滑橇測試數值模型之建立與應用
論文名稱(外文):Development and Application of Side-Impact Sled Test Numerical Model
指導教授:鄧作樑鄧作樑引用關係
指導教授(外文):TENG, TSO-LIANG
學位類別:碩士
校院名稱:大葉大學
系所名稱:車輛工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:105
中文關鍵詞:側撞滑橇測試全車碰撞測試有限元素法側撞氣囊乘員損傷LS-DYNA 3D
外文關鍵詞:Side-Impact Sled TestFull-Scale Vehicle Impact TestFinite Element MethodSide Impact AirbagInjury of OccupantLS-DYNA 3D
相關次數:
  • 被引用被引用:1
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

為了提升車輛結構與防護裝備的安全性能,一般車廠以及研究單位皆採用全車碰撞測試,雖然全車碰撞測試為最完善且最直接之測試分析方法,但是在考量人力、物力以及財力等因素,可考量使用側撞滑橇衝擊測試系統。由於電腦軟、硬體的快速發展,其運算速度不斷的提升,在車輛結構與被動安全防護裝備設計初期則可利用數值模擬軟體進行初步分析以及改良,更可進一步進行被動安全防護裝備之最適化設計。故本論文將以數值方法建構側撞滑橇衝擊模型,並進行數值模型之驗證與應用。本論文所建構之側撞滑橇衝擊系統數值模型乃參考TNO公司所研發之 BASIS測試系統,並以LS-DYNA 3D有限元素數值分析軟體進行數值環境模型的建構。側撞滑橇衝擊系統數值模型測試分析結果並與美規FMVSS-214全車側撞數值模擬結果進行比對與驗證;並且應用側撞滑橇衝擊系統數值模型進行側撞氣囊初步設計與安全性之評估。本研究所建立之側撞滑橇衝擊測試系統數值模型不僅可以大大縮短數值模擬的計算時間,更可以針對設計與分析需求進行不同碰撞條件的模擬,可有效降低研發成本與時程。亦可藉由本研究建立之模型進行車輛側撞與被動安全防護裝置之安全性評估,提供車廠與相關車輛研究單位進行研發設計之參考。
ABSTRACT

Crash test is commonly employed for examining occupant protection capability of a particular vehicle. Full-scale crash tests can achieve results that closely resemble an actual accident, but the test is complex and expensive. Sled test is an effective means of evaluating crash safety of vehicle interiors. This technique can simulate real crash conditions without destroying vehicle structure. Therefore, the sled system is typically employed to assess the protective capability of safety equipment during vehicle research and development stages. Recently, advances in computer technology have allowed applied mathematicians, engineers, and scientists to solve previously intractable problems. The sled tests can be accurately performed by computer simulations. As such, computer simulations are both economical and time efficient as an alternative to physical testing. This work presents the procedure of full-scale and sled side-impact tests were based on the Federal Motor Vehicle Safety Standard No. 214 (FMVSS-214) that simulate a side-impact accident. The side-impact sled systems were based on BASIS testing system developed by TNO Science and Industry. The crash simulations utilized the finite element code LS-DYNA3D. The dynamic response of human body’s in crashes was discussed herein. Additionally, occupant injuries were measured. To verify the accuracy of the proposed FE (Finite Element) models of crash test and sled test, the simulation results were compared to those obtained from experimental tests. The comparison results indicated that the proposed FE models of crash test and sled test have considerable potential for estimating the crash safety performance of a vehicle and assisting future development of safety technologies. These numerical models predicted severity of driver injuries during impacts, reduced the time of research and design, and reduce experimental costs. The accuracy of the numerical model of sled test makes it a valuable approach for side-impact crashworthiness simulations. The proposed methods can be applied to examine the dynamic behavior of occupants and analyze injuries during side-impact accidents. Moreover, the proposed FE models serve as design guidelines for the vehicle structure and safety equipment required to protect vehicle occupants.
目錄

封面內頁
簽名頁
授權書 iii
中文摘要 iv
英文摘要 v
誌謝 vii
目錄 ix
圖目錄 xii
表目錄 xv

第一章 前言
1.1 研究動機 1
1.2 文獻回顧 4
1.3 本文目標 9
1.4 本文架構 10
第二章 動態側撞測試法規
2.1 側撞實驗人偶 15
2.2 MDB撞擊台車 16
2.3 測試車輛 17
2.4 動態側撞測試環境 17
2.5 人體損傷規範 18
第三章 側撞滑橇測試系統 27
第四章 側撞滑橇測試系統有限元素模型
4.1 FMVSS-214全車側邊撞擊測試數值模擬 32
4.2 FMVSS-214全車側撞測試模擬結果 33
4.2.1 人偶動態反應 34
4.2.2 人偶加速度反應 34
4.2.3 人偶側撞損傷分析 37
4.3 車輛速度響應 37
4.4 側撞滑橇測試系統有限元素模型之建構 38
4.4.1 車門滑橇有限元素模型 39
4.4.2 座椅滑橇有限元素模型 39
4.4.3 系統滑軌有限元素模型 39
4.4.4 測試車門有限元素模型 40
4.4.5 測試座椅有限元素模型 40
4.5 側撞滑橇測試數值模擬 41
4.6 側撞滑橇測試模擬分析結果 42
4.6.1 人偶動態反應 42
4.6.2 人偶加速度反應 43
4.6.3 人偶側撞損傷分析 45
第五章 側撞滑橇測試系統模型之應用
5.1 側撞氣囊 65
5.1.1 側撞氣囊之種類 65
5.1.2 側撞氣囊之組成元件 66
5.2 側撞氣囊有限元素模型 68
5.3 側撞氣囊安全性評估 70
5.3.1 人偶動態反應 70
5.3.2 人偶加速度反應 70
5.3.3 人偶側撞損傷分析 72
5.4 側撞氣囊之設計 73
5.5 側撞氣囊防護效果評估 75
5.5.1 人偶加速度反應 75
5.5.2 人偶側撞損傷分析 78
第六章 結論 98
參考文獻 101
參考文獻

[1] http://www.ttvma.org.tw/cht/industrial-survey.php
[2] http://www.tno.nl/industrie_en_techniek/index.xml
[3] http://www.saabnet.com/tsn/models/2001/pr23.html
[4] http://media.ford.com/products/presskit_display.cfm?press_subs ection_id=424&v ehicle_id=1231
[5] Kyoso Ishida, Mitsugi Fukahori, Kastsunori Hanakawa, Hideaki Tanaka and Kenji Matsuda, “Development of a Technique to Strengthen Body Frame With Structural Foam”, SAE Paper No.2001-01-0313, (2001)
[6] S. Erzen, Z. Ren, and Anzel, “Analysis of FRP side-Door impact beam”,http://www.sussex.ac.uk/automotive/tvt2002/15_ erzen.pdf#search='side%20door'
[7] David C. Viano, “Evaluation of Armrest Loading in Side Impacts”, SAE paper 912899, (1991)
[8] Roger P. Daniel, Robert W. Hultman, and Lee A. Walker, “Research and Development for Lower Lateral Force Armrests”, SAE paper No. 952734, (1995)
[9] Yih-Charng Deng, “The Importance of Test Method in Determing the Effects of Door Padding in Side Impact”, SAE paper 892429, (1989)
[10] F. Shokoohi, D. S. Breed, “One-Dimensional Model for Predicting Side Intrusion Injuries Including Effects of Padding”, SAE paper 910600, (1991)
[11] Thomas J. Trella, Hampton C. Gabler III, Joseph N. Kanianthra, and J. Joseph Wagner, “Side Impact Crashworthiness Design: Evaluation of Padding Characteristics Through Mathematical Simulations”, SAE paper 912900, (1991)
[12] S. Sundararajan, C. C. Chou, G. G. Lim, J. A. Prater, and R. R. Clements, “Dynamic Door Component Test Methodology”, SAE paper 950877, (1995)
[13] Midoun, D. E., Rao, M. k., Kalidindi R., “Dummy Models for Crash Simulation in Finite Element Programs”, SAE Paper No. 912912, (1991)
[14] Yih-Charng Deng, Bruce Tzeng, “Side Impact Countermeasure Study Using A Hybrid Modeling Technique”, SAE paper 962413, (1996)
[15] Madama Gopal, Vital Anne, “Performance Evaluation of Dooe & Seat Side-Impact Airbags for Passenger Van and Sport-Utility Vehicles”, SAE Paper No. 980912, (1998)
[16] J. R. Hopton, A. R. Payne, “Comparison Stusy of EuroSID, USSID, BioSID Performance Using MIRA’s New M-SIS Side Impact Simulation Technique”, SAE Paper No. 960103, (1996)
[17] Jaekoo Chung, John M. Cavanaugh, Matt Mason Jr., albert I. King, “Development of a Sled-to-Sled Subsystem Side Impact Test Methodology”, SAE Paper No. 970569, (1997)
[18] P. Michael Miller II, Hai Gu, “Sled Testing Procedure for Side Impact Airbag Development”, SAE Paper No. 970570, (1997)
[19] A. R. Payne, R. Mohacsi, B. Allan-Stubbs, “The Effects of Variability in Vehicle Structure and Occupant Position on Side Impact Dummy Response Using the MIRA M-SIS Side Impact Technique”, SAE Paper No. 970571, (1997)
[20] Douglas J. Stein, “Apparatus and Method for Side Impact testing”, SAE Paper No. 970572, (1997)
[21] Bernadette Allan-Stubbs, “The Effect of Changes in Seating Position and Door Velocity Time History on Side Impact Dummt Response”, SAE Paper No. 980911, (1998)
[22] S. Vaidyaraman, H. khandelwal, C. Lee, J. Xu, “State-of-the-art Side Airbag Modeling and Its Application in Occupant Safety in Lateral Collisions”, SAE Paper No. 980915, (1998)
[23] K. Aekbote, S. Sundararajan, C. C. Chou, G. G. Lim, J. A. Prater, “A New Component Test Methodology Concept for Side Impact Simulation”, SAE Paper No. 1999-01-0427, (1999)
[24] Young-Ho Ha, Byung-Wan Lee, “A Device and Test Methodology for Side Impact Crash Simulation Using A Frontal Crash Simulator and Two Hydraulic Brake Systems”, SAE Paper No. 2000-01-0047, (2000)
[25] Richard Kent, Jeff Crandall, Jon Butcher, “Sled System Requirements for the Analysis of Side Impact Thoracic Injury Criteria and Occupant Protection”, SAE Paper No. 2001-01-0721, (2001)
[26] P. Michael Miller II, Todd Nowak, Walter Macklem, “A Compact Sled System for Linear Impact, Pole Impact, and Side Impact Testing”, SAE Paper No. 2002-01-0695, (2002)
[27] Byron Saari, Randy Ellis, “New Methods of Side Impact Simulation for Better Waveform Reproduction and Door Interaction”, SAE Paper No. 2004-01-0474, (2004)
[28] http://www.safercar.gov/
[29] http://saab-club.com/gallery/details.php?image_id=963
[30] Laboratory Test Procedure For FMVSS No.214 “Dynamic” Side Impact Protection, NHTSA, January, (2003)
[31] Zaouk, A.k., Marzougui, D., “Development and Validation of a US Side Impact Moveable Deformable Barrier FE Model”, FHWA/NHTSA National Crash Analysis Center, The George Washington University, Ashburn, (2002)
[32] ”Testing for Side Impact Protection-Passenger Cars, 1991 Ford Taurus, Contract No: DTRS-57-95-C-00010(TTD#3)” MGA Proving Grounds, Burlington, WI53105, March 31, (1997)
[33] Hultman, R.W., Laske, T.G., Chou, C.C., Lim, G.G., Chrobak, E.I., Vecchio, M.T., “NHTSA Passenger Car Side Impact Dynamic Test Procedure-Test-To-Test Variability Estimates”, SAE Paper No. 910603, (1991)
[34] LS-DYNA 970 User Manual.
[35] Klaus Friedewald,“Design Methods for Adjusting the Side Airbag Sensor and the Car Body”, Volkswagen AG, Paper NO.98-S8-W-17
[36] http://www.safercar.gov/airbags/pages/SABFAQs.htm
[37] http://www.autoblog.com/2006/04/15/new-york-auto-show- man ufacturers-flaunt-their-safety-features/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top