跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/12 14:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇文彥
研究生(外文):Wen-Yan Su
論文名稱:超立方體最長環與路徑容錯嵌入之研究
論文名稱(外文):Longest ring and path embedding in faulty hypercub
指導教授:洪春男洪春男引用關係
指導教授(外文):Chun-Nan Hung
學位類別:碩士
校院名稱:大葉大學
系所名稱:資訊工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:39
中文關鍵詞:超立方體最長環狀最長路徑
外文關鍵詞:n-dimensional hypercubelongest cyclelongest path
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文當中,我們介紹超立方體圖形在相鄰點容錯之後,有Property 2H以及Hamiltonian laceable的性質。依據這些定理,我們可以在超立方體圖形中建構沒有錯點錯邊的最長環狀;此環的長度為2n-2|Fv|+4,而它的容錯最多到n個任意點。我們也可以建構沒有錯點錯邊的最長路徑,而路徑的容錯最多到n-1的任意點。
In this paper, we show that the adjacency fault tolerance for property 2H of hypercube. We also show that the adjacency fault tolerance for Hamiltonian laceability of hypercube. Applying these results, we can construct a fault-free cycle with length at least 2n-2|Fv|+4 in Qn-Fv where Fv is the faulty vertices set contains at least two black vertices and two white vertices with |Fv|n. We also construct a fault-free path of length at least 2n-2|Fv|+3 between two different color vertices, and construct the fault-free path with of length at least 2n-2|F_v|+2 between two same color vertices, |Fv| n-1.
Chapter 1 Introduction ......................................1
Chapter 2 Preliminaries .....................................4
Chapter 3 The adjacency property 2H of hypercube ............6
Chapter 4 The adjacency Hamiltonian laceable of hypercube ...15
Chapter 5 The Longest ring in faulty hypercube .............27
Section 5.1. Hamiltonian cycle ............................27
Section 5.2. Fault-free cycle ............................ 28
Chapter 6 The Longest path in faulty hypercube...............30
Section 6.1. between two different colorvertice ...........30
Section 6.2. between two same color vertice ...............32
Chapter 7 Conclusion .......................................36
References ................................................ ..37
[1] J. S. Fu, ”Fault-tolerant cycle embedding in the hypercube,” Parallel Computing,,vol. 29, pp.821-832, (2003).
[2] S. Y. Hsieh, ”Fault-tolerant cycle embedding in the hypercube with more both faulty vertices and faulty edges,” Parallel Computing, vol. 32, pp.84-91, (2006).
[3] C. N. Hung, Y. H. Chang, and C. M. Sun, ”LONGEST PATHS AND CYCLES
IN FAULT HYPERCUBES,” Proceedings of the IASTED ICPDCN, pp.101-110,(2006).
[4] C. D. Park and K. Y. Chwa, ”Hamiltonian properties on the class of hypercube-like networks,” Information Processing Letters,,vol. 91, pp.11-17, (2004).
[5] Abhijit Sengupta, ”On ring embedding in hypercubes with faulty nodes and links,” Information Processing Letters,, vol. 68, pp.207-214, (1998).
[6] C. H. Tsai, J.J.M. Tan, T.Liang, and L.H. Hsu, ”Fault-tolerant Hamiltonian laceability of hypercubes,” Information Processing Letters,, vol. 83, pp.301-306,(2002).
[7] Y. C. Tseng, ”Embedding a ring in a hypercube with both faulty links and faulty nodes,” Information Processing Letters,, vol. 59, pp.217-222, (1996).
[8] S.B. Akers, B. Krishnamurthy, ”A group-theoretic model for symmetric interconnection networks,” IEEE Trans. Comput,, vol. 38(4), pp.555-566,(1989).
[9] Y. H. Chang, C. N Hung, ”Adjacent Vertices Fault Tolerance Hamiltonian Laceability of Hypercube Graphs,” Workshop on Combinatorial Mathematics and Computation Theory, vol 22, pp.301-309, (2005).
[10] J.C. Bermond(Ed.), ”Interconnection networks,” Discrete Appl. Math,,pp.37+38 ,(1992).
[11] F. Buckley, F. Harary, ”Distance in Graphs,” Addison-Wesley,,(1990).
[12] M. Y. Chen, S.-J. Lee, ”Distributed fault-tolerant embedding of rings in hypercubes,” Parallel Distrib. Comput,, vol. 11 p.63-71, (1991).
[13] J.H. Chang, C.S. Shin, K.Y. Chwa, ”Ring embedding in faulty star graphs,”IEICE Trans. Fund,, E82-A (9), pp.1953-1964, (1999).
[14] D.F. Hsu, ”Interconnection Networks and Algorithms,”Networks,, vol. 23 (4),(1993).
[15] S. Y. Hsieh, ”Embedding longest fault-free paths onto star graphs with more vertex faults,” Theoretical Computer Science,, vol. 337, pp.370-378,(2005).
[16] S.Y. Hsieh, G.H. Chen, C.W. Ho, ”Embed longest rings onto star graphs with vertex faults,” Proceedings of the International Conference on Parallel Processing,, pp.140-147, (1998).
[17] S.Y. Hsieh, G.H. Chen, C.W. Ho, ”Fault-free Hamiltonian cycles in faulty arrangement graphs,” IEEE Transactions on Parallel and Distributed Systems,, vol.10(3), pp.223-237, (1999).
[18] S.Y. Hsieh, G.H. Chen, C.W. Ho, ”Hamiltonian-laceability of star graphs,” Networks,, vol. 36, pp.225-232, (2000).
[19] S.Y. Hsieh, G.H. Chen, C.W. Ho, ”Longest fault-free paths in star graphs with vertex faults,” Theoret. Comput. Sci,, vol. 262, pp.215-227, (2001).
[20] S.Y. Hsieh, G.H. Chen, C.W. Ho, ”Longest fault-free paths in star graphs with edge faults,” IEEE Trans. Comput,, vol. 50(9), pp.960-971, (2001).
[21] C.N. Hung and K.C. Hu, ”Fault-tolerant Hamiltonian laceability of bipartite hypercube-like networks,” The Proceedings of ICS, pp.1145-1149,(2004).
[22] F.T. Leighton, ”Parallel Algorithms and Architectures Arrays, Trees and Hypercubes,” Morgan Kaufmann, San Mateo,, (1992).
[23] S. Latifi, S.Q. Zheng, N. Bagherzadeh, ”Optimal ring embedding in hypercubes with faulty links,” Proceedings of the IEEE,, pp.178-184, (1992).
[24] J. H. Park, Hee-Chul Kim, ”Longest paths and cycles in faulty star graphs,”Parallel Distrib. Comput,, vol. 64, pp.1286-1296, (2004).
[25] Abhijit Sengupta, ”On ring embedding in hypercubes with faulty nodes and links,” Information Processing Letters,, vol. 68 , pp.207-214,(1998).
[26] G. Simmons, ”Almost all n-dimensional rectangular lattices are Hamilton laceable,” Congr. Numer,, vol. 21, pp.103-108, (1978).
[27] Y. Saad and M.H. Schultz, ”Topological properties of hypercubes, ” IEEE Trans,Comput,, vol. 37(7), pp.867-872, (1998).
[28] Y. C. Tseng, S.H. Chang, J.P. Sheu, ”Fault-tolerant ring embedding in stargraphs with both link and node failures,” IEEE Trans. Parallel Distributed Systems,, vol. 8(12), pp.1185-1195, (1997).
[29] C.H. Tsai, J.J.M. Tan, T. Liang, L. H. Hsu, ”Fault-tolerant Hamiltonian laceability of hypercubes,” Information Processing Letters,, vol. 83, pp.301-306, (2002)
[30] D.J. Wang, ”Embedding Hamiltonian cycles into folded hypercubes with linkfaults,” Journal of Parallel and Distributed Computing,, vol. 61(4), pp.545-564,(2001).
[31] P.J. Yang, S.B. Tien, C.S. Raghavendra, ”Embedding of rings and meshes onto faulty hypercubes using free dimensions,” IEEE Transactions on Computers,, vol.43(5), p.608-613, (1994).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 王英州:〈教學媒體融入教學面臨的阻礙〉,《資訊與教育》,第95期,(民92年6月)
2. 王曉璿:〈資訊科技融入各科教學探究〉,《菁莪季刊》,(民88)
3. 王智玄:〈新的學習策略---網路合作式學習之探討〉,《資訊與教育》,(民89年8月)
4. 何榮桂:〈他山之石可以攻錯∼亞太地區(臺、港、新、日、韓)資訊教育的發展與前瞻〉,《資訊與教育亞太地區中小學比較資訊教育專刊》,(民90)
5. 何榮桂:〈從九年一貫新課程規劃看我國資訊教育未來的發展〉,《資訊與教育》,第85期(民90年10月)
6. 何榮桂:〈台灣資訊教育的現況與發展---兼論資訊科技融入教學〉,《資訊與教育》,第87期,(民91年2月)
7. 何富財:〈資訊化社會的教師專業與素養〉,《教師天地》,第128期,(民93年2月)
8. 吳文中:〈從資訊教學融入各科談教師資訊素養的困境與因應之道〉,《資訊與教育》,第79期,(民89年10月)
9. 吳正己:〈從英特爾e教師計畫談資訊融入教學〉,《資訊與教育》,第85期,(民90年10月)
10. 吳怡靜:〈資訊教育----決定下一輪國家競爭力〉,《天下雜誌2000年教育特刊》,(民89年11月)
11. 李雪莉:〈教師運用資訊網路能力調查〉,《天下雜誌2000年教育特刊》,(民89年11月)
12. 林奇賢:〈網路學習環境的設計與應用〉,《資訊與教育》第68期,(民88年)
13. 林麗娟:〈問題導向融入學生專題探索之評析〉,《資訊與教育》,第94期,(民92年4月)
14. 邱瓊慧:〈中小學資訊科技融入教學之實踐〉,《資訊與教育》,第88期(民91年4月)
15. 殷允芃:〈與世界接軌向未來迎航〉,《天下雜誌2000年教育特刊》,(民89年11月)