|
[1] J. S. Fu, ”Fault-tolerant cycle embedding in the hypercube,” Parallel Computing,,vol. 29, pp.821-832, (2003). [2] S. Y. Hsieh, ”Fault-tolerant cycle embedding in the hypercube with more both faulty vertices and faulty edges,” Parallel Computing, vol. 32, pp.84-91, (2006). [3] C. N. Hung, Y. H. Chang, and C. M. Sun, ”LONGEST PATHS AND CYCLES IN FAULT HYPERCUBES,” Proceedings of the IASTED ICPDCN, pp.101-110,(2006). [4] C. D. Park and K. Y. Chwa, ”Hamiltonian properties on the class of hypercube-like networks,” Information Processing Letters,,vol. 91, pp.11-17, (2004). [5] Abhijit Sengupta, ”On ring embedding in hypercubes with faulty nodes and links,” Information Processing Letters,, vol. 68, pp.207-214, (1998). [6] C. H. Tsai, J.J.M. Tan, T.Liang, and L.H. Hsu, ”Fault-tolerant Hamiltonian laceability of hypercubes,” Information Processing Letters,, vol. 83, pp.301-306,(2002). [7] Y. C. Tseng, ”Embedding a ring in a hypercube with both faulty links and faulty nodes,” Information Processing Letters,, vol. 59, pp.217-222, (1996). [8] S.B. Akers, B. Krishnamurthy, ”A group-theoretic model for symmetric interconnection networks,” IEEE Trans. Comput,, vol. 38(4), pp.555-566,(1989). [9] Y. H. Chang, C. N Hung, ”Adjacent Vertices Fault Tolerance Hamiltonian Laceability of Hypercube Graphs,” Workshop on Combinatorial Mathematics and Computation Theory, vol 22, pp.301-309, (2005). [10] J.C. Bermond(Ed.), ”Interconnection networks,” Discrete Appl. Math,,pp.37+38 ,(1992). [11] F. Buckley, F. Harary, ”Distance in Graphs,” Addison-Wesley,,(1990). [12] M. Y. Chen, S.-J. Lee, ”Distributed fault-tolerant embedding of rings in hypercubes,” Parallel Distrib. Comput,, vol. 11 p.63-71, (1991). [13] J.H. Chang, C.S. Shin, K.Y. Chwa, ”Ring embedding in faulty star graphs,”IEICE Trans. Fund,, E82-A (9), pp.1953-1964, (1999). [14] D.F. Hsu, ”Interconnection Networks and Algorithms,”Networks,, vol. 23 (4),(1993). [15] S. Y. Hsieh, ”Embedding longest fault-free paths onto star graphs with more vertex faults,” Theoretical Computer Science,, vol. 337, pp.370-378,(2005). [16] S.Y. Hsieh, G.H. Chen, C.W. Ho, ”Embed longest rings onto star graphs with vertex faults,” Proceedings of the International Conference on Parallel Processing,, pp.140-147, (1998). [17] S.Y. Hsieh, G.H. Chen, C.W. Ho, ”Fault-free Hamiltonian cycles in faulty arrangement graphs,” IEEE Transactions on Parallel and Distributed Systems,, vol.10(3), pp.223-237, (1999). [18] S.Y. Hsieh, G.H. Chen, C.W. Ho, ”Hamiltonian-laceability of star graphs,” Networks,, vol. 36, pp.225-232, (2000). [19] S.Y. Hsieh, G.H. Chen, C.W. Ho, ”Longest fault-free paths in star graphs with vertex faults,” Theoret. Comput. Sci,, vol. 262, pp.215-227, (2001). [20] S.Y. Hsieh, G.H. Chen, C.W. Ho, ”Longest fault-free paths in star graphs with edge faults,” IEEE Trans. Comput,, vol. 50(9), pp.960-971, (2001). [21] C.N. Hung and K.C. Hu, ”Fault-tolerant Hamiltonian laceability of bipartite hypercube-like networks,” The Proceedings of ICS, pp.1145-1149,(2004). [22] F.T. Leighton, ”Parallel Algorithms and Architectures Arrays, Trees and Hypercubes,” Morgan Kaufmann, San Mateo,, (1992). [23] S. Latifi, S.Q. Zheng, N. Bagherzadeh, ”Optimal ring embedding in hypercubes with faulty links,” Proceedings of the IEEE,, pp.178-184, (1992). [24] J. H. Park, Hee-Chul Kim, ”Longest paths and cycles in faulty star graphs,”Parallel Distrib. Comput,, vol. 64, pp.1286-1296, (2004). [25] Abhijit Sengupta, ”On ring embedding in hypercubes with faulty nodes and links,” Information Processing Letters,, vol. 68 , pp.207-214,(1998). [26] G. Simmons, ”Almost all n-dimensional rectangular lattices are Hamilton laceable,” Congr. Numer,, vol. 21, pp.103-108, (1978). [27] Y. Saad and M.H. Schultz, ”Topological properties of hypercubes, ” IEEE Trans,Comput,, vol. 37(7), pp.867-872, (1998). [28] Y. C. Tseng, S.H. Chang, J.P. Sheu, ”Fault-tolerant ring embedding in stargraphs with both link and node failures,” IEEE Trans. Parallel Distributed Systems,, vol. 8(12), pp.1185-1195, (1997). [29] C.H. Tsai, J.J.M. Tan, T. Liang, L. H. Hsu, ”Fault-tolerant Hamiltonian laceability of hypercubes,” Information Processing Letters,, vol. 83, pp.301-306, (2002) [30] D.J. Wang, ”Embedding Hamiltonian cycles into folded hypercubes with linkfaults,” Journal of Parallel and Distributed Computing,, vol. 61(4), pp.545-564,(2001). [31] P.J. Yang, S.B. Tien, C.S. Raghavendra, ”Embedding of rings and meshes onto faulty hypercubes using free dimensions,” IEEE Transactions on Computers,, vol.43(5), p.608-613, (1994).
|